3 resultados para Procedure for Multiple Classifications
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The urgent need for alternative solutions mitigating the impacts of human activities on the environment has strongly opened new challenges and opportunities in view of the energy transition. Indeed, the automotive industry is going through a revolutionary moment in its quest to reduce its carbon footprint, with biofuels being one of the viable alternatives. The use of different classes of biofuels as fuel additives/standalone components has attracted the attention of many researchers. Despite their beneficial effects, biofuel’s combustion can also result in the production of undesirable pollutants, requiring complete characterization of the phenomena occurring during their production and consumption. Industrial scale-up of biomass conversion is challenging owing to the complexity of its chemistry and transport phenomena involved in the process. In this view, the role of solid-phase and gas-phase chemistry is paramount. Thus, this study is devoted to detailed analysis of physical-chemical phenomena characterizing biomass pyrolysis and biofuel oxidation. The pyrolysis mechanism has been represented by 20 reactions whereas, the gas-phase kinetic models; manually upgraded model (KiBo_MU) and automated model (KiBo_AG), comprises 141 species and 453 reactions, and 631 species and 28329 reactions, respectively. The accuracy of the kinetic models was tested against experimental data and the models captured experimental trends very well. While the development and validation of detailed kinetic mechanisms is the main deliverable of this project, the realized procedure integrating schematic classifications with methodologies for the identification of common decomposition pathways and intermediates represents an additional source of novelty. Besides, the fundamentally oriented nature of the adopted method allows the identification of most relevant reactions and species under the operating conditions different industrial applications, paving the way for reduced kinetic mechanisms. Ultimately, the resulting detailed mechanisms can be used to integrate with more complex fluid dynamics model to accurately reproduce the behavior of real systems and reactors.
Resumo:
Dynamical models of stellar systems represent a powerful tool to study their internal structure and dynamics, to interpret the observed morphological and kinematical fields, and also to support numerical simulations of their evolution. We present a method especially designed to build axisymmetric Jeans models of galaxies, assumed as stationary and collisionless stellar systems. The aim is the development of a rigorous and flexible modelling procedure of multicomponent galaxies, composed of different stellar and dark matter distributions, and a central supermassive black hole. The stellar components, in particular, are intended to represent different galaxy structures, such as discs, bulges, halos, and can then have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. The theoretical framework supporting the modelling procedure is presented, with the introduction of a suitable nomenclature, and its numerical implementation is discussed, with particular reference to the numerical code JASMINE2, developed for this purpose. We propose an approach for efficiently scaling the contributions in mass, luminosity, and rotational support, of the different matter components, allowing for fast and flexible explorations of the model parameter space. We also offer different methods of the computation of the gravitational potentials associated of the density components, especially convenient for their easier numerical tractability. A few galaxy models are studied, showing internal, and projected, structural and dynamical properties of multicomponent galaxies, with a focus on axisymmetric early-type galaxies with complex kinematical morphologies. The application of galaxy models to the study of initial conditions for hydro-dynamical and $N$-body simulations of galaxy evolution is also addressed, allowing in particular to investigate the large number of interesting combinations of the parameters which determine the structure and dynamics of complex multicomponent stellar systems.
Resumo:
Torpor is a successful survival strategy displayed by several mammalian species to cope with harsh environmental conditions. A complex interplay of ambient, genetic and circadian stimuli acts centrally to induce a severe suppression of metabolic rate, usually followed by an apparently undefended reduction of body temperature. Some animals, such as marmots, are able to maintain this physiological state for months (hibernation), during which torpor bouts are periodically interrupted by short interbouts of normothermia (arousals). Interestingly, torpor adaptations have been shown to be associated with a large resistance towards stressors, such as radiation: indeed, if irradiated during torpor, hibernators can tolerate higher doses of radiation, showing an increased survival rate. New insights for radiotherapy and long-term space exploration could arise from the induction of torpor in non-hibernators, like humans. The present research project is centered on synthetic torpor (ST), a hypometabolic/hypothermic condition induced in a non-hibernator, the rat, through the pharmacological inhibition of the Raphe Pallidus, a key brainstem area controlling thermogenic effectors. By exploiting this procedure, this thesis aimed at: i) providing a multiorgan description of the functional cellular adaptations to ST; ii) exploring the possibility, and the underpinning molecular mechanisms, of enhanced radioresistance induced by ST. To achieve these aims, transcriptional and histological analysis have been performed in multiple organs of synthetic torpid rats and normothermic rats, either exposed or not exposed to 3 Gy total body of X-rays. The results showed that: i) similarly to natural torpor, ST induction leads to the activation of survival and stress resistance responses, which allow the organs to successfully adapt to the new homeostasis; ii) ST provides tissue protection against radiation damage, probably mainly through the cellular adaptations constitutively induced by ST, even though the triggering of specific responses when the animal is irradiated during hypothermia might play a role.