5 resultados para Problems of consumption

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The academic environment has recently recognized the importance and benefits that an extensive research on the translation of advertising can have for translation studies. Despite the growing interest and increasing research activity in the field it is still difficult to speak about a theory of advertising translation in general. There is a need for further study encompassing different languages and both heterogeneous and homogenous cultures that will give the possibility to receive a more complete map of what the translation of advertising is and should be. Previous studies have been concentrated, for the most part, on Western European language pairs. This study is a research into perfume and cosmetics print advertisements translated from English into Russian where both visual and verbal elements are considered. Three broad translation approaches have been identified in what concerns the verbal message: Translated message, parallel translation, recreated adverts, and three approaches in dealing with the image: similar images, modified images, completely different images. The thesis shows that where Russian advertisements for perfume products tend to have a message, or create one, this is often lacking in the English copy. The article ends by suggesting that perfume advertisements favor the standardization approach when entering Russian market. The attempts to localize the advert have also been noticed although they are obviously less numerous in perfume adverts and are rather instances of adaptation - a mix between the localization and standardization approaches since they keep drawing on the same globally accepted universals about female beauty and concern for ‘woman’s identity’ (we focused our analysis on products designed for female consumers). This study, complementing previous studies, aims to be a contribution to the description of laws and strategies that guide the translation of advertising texts into Russian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of Next Generation Sequencing promotes Biology in the Big Data era. The ever-increasing gap between proteins with known sequences and those with a complete functional annotation requires computational methods for automatic structure and functional annotation. My research has been focusing on proteins and led so far to the development of three novel tools, DeepREx, E-SNPs&GO and ISPRED-SEQ, based on Machine and Deep Learning approaches. DeepREx computes the solvent exposure of residues in a protein chain. This problem is relevant for the definition of structural constraints regarding the possible folding of the protein. DeepREx exploits Long Short-Term Memory layers to capture residue-level interactions between positions distant in the sequence, achieving state-of-the-art performances. With DeepRex, I conducted a large-scale analysis investigating the relationship between solvent exposure of a residue and its probability to be pathogenic upon mutation. E-SNPs&GO predicts the pathogenicity of a Single Residue Variation. Variations occurring on a protein sequence can have different effects, possibly leading to the onset of diseases. E-SNPs&GO exploits protein embeddings generated by two novel Protein Language Models (PLMs), as well as a new way of representing functional information coming from the Gene Ontology. The method achieves state-of-the-art performances and is extremely time-efficient when compared to traditional approaches. ISPRED-SEQ predicts the presence of Protein-Protein Interaction sites in a protein sequence. Knowing how a protein interacts with other molecules is crucial for accurate functional characterization. ISPRED-SEQ exploits a convolutional layer to parse local context after embedding the protein sequence with two novel PLMs, greatly surpassing the current state-of-the-art. All methods are published in international journals and are available as user-friendly web servers. They have been developed keeping in mind standard guidelines for FAIRness (FAIR: Findable, Accessible, Interoperable, Reusable) and are integrated into the public collection of tools provided by ELIXIR, the European infrastructure for Bioinformatics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Synthetic cannabinoid receptor agonists (SCRAs) represent the widest group of New Psychoactive Substances (NPS) and, around 2021-2022, new compounds emerged on the market. The aims of the present research were to identify suitable urinary markers of Cumyl-CB-MEGACLONE, Cumyl-NB-MEGACLONE, Cumyl-NB-MINACA, 5F-EDMB-PICA, EDMB-PINACA and ADB-HEXINACA, to present data on their prevalence and to adapt the methodology from the University of Freiburg to the University of Bologna. Materials and methods. Human phase-I metabolites detected in 46 authentic urine samples were confirmed in vitro with pooled human liver microsomes (pHLM) assays, analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qToF-MS). Prevalence data were obtained from urines collected for abstinence control programs. The method to study SCRAs metabolism in use at the University of Freiburg was adapted to the local facilities, tested in vitro with 5F-EDMB-PICA and applied to the study of ADB-HEXINACA metabolism. Results. Metabolites built by mono, di- and tri-hydroxylation were recommended as specific urinary biomarkers to monitor the consumption of SCRAs bearing a cumyl moiety. Monohydroxylated and defluorinated metabolites were suitable proof of 5F-EDMB-PICA consumption. Products of monohydroxylation and amide or ester hydrolysis, coupled to monohydroxylation or ketone formation, were recognized as specific markers for EDMB-PINACA and ADB-HEXINACA. The LC-qToF-MS method was successfully adapted to the University of Bologna, as tested with 5F-EDMB-PICA in vitro metabolites. Prevalence data showed that 5F-EDMB-PINACA and EDMB-PINACA were more prevalent than ADB-HEXINACA, but for a limited period. Conclusion. Due to undetectability of parent compounds in urines and to shared metabolites among structurally related compounds, the identification of specific urinary biomarkers as unequivocal proofs of SCRAs consumption remains challenging for forensic laboratories. Urinary biomarkers are necessary to monitor SCRAs abuse and prevalence data could help in establishing tailored strategies to prevent their spreading, highlighting the role for legal medicine as a service to public health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the inference problem is the posterior distribution of this parameter. A regular version of the posterior distribution in functional spaces is characterized. However, the infinite dimension of the considered spaces causes a problem of non continuity of the solution and then a problem of inconsistency, from a frequentist point of view, of the posterior distribution (i.e. problem of ill-posedness). The contribution of this essay is to propose new methods to deal with this problem of ill-posedness. The first one consists in adopting a Tikhonov regularization scheme in the construction of the posterior distribution so that I end up with a new object that I call regularized posterior distribution and that I guess it is solution of the inverse problem. The second approach consists in specifying a prior distribution on the parameter of interest of the g-prior type. Then, I detect a class of models for which the prior distribution is able to correct for the ill-posedness also in infinite dimensional problems. I study asymptotic properties of these proposed solutions and I prove that, under some regularity condition satisfied by the true value of the parameter of interest, they are consistent in a "frequentist" sense. Once I have set the general theory, I apply my bayesian nonparametric methodology to different estimation problems. First, I apply this estimator to deconvolution and to hazard rate, density and regression estimation. Then, I consider the estimation of an Instrumental Regression that is useful in micro-econometrics when we have to deal with problems of endogeneity. Finally, I develop an application in finance: I get the bayesian estimator for the equilibrium asset pricing functional by using the Euler equation defined in the Lucas'(1978) tree-type models.