6 resultados para Problems of Computer Intellectualization

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The academic environment has recently recognized the importance and benefits that an extensive research on the translation of advertising can have for translation studies. Despite the growing interest and increasing research activity in the field it is still difficult to speak about a theory of advertising translation in general. There is a need for further study encompassing different languages and both heterogeneous and homogenous cultures that will give the possibility to receive a more complete map of what the translation of advertising is and should be. Previous studies have been concentrated, for the most part, on Western European language pairs. This study is a research into perfume and cosmetics print advertisements translated from English into Russian where both visual and verbal elements are considered. Three broad translation approaches have been identified in what concerns the verbal message: Translated message, parallel translation, recreated adverts, and three approaches in dealing with the image: similar images, modified images, completely different images. The thesis shows that where Russian advertisements for perfume products tend to have a message, or create one, this is often lacking in the English copy. The article ends by suggesting that perfume advertisements favor the standardization approach when entering Russian market. The attempts to localize the advert have also been noticed although they are obviously less numerous in perfume adverts and are rather instances of adaptation - a mix between the localization and standardization approaches since they keep drawing on the same globally accepted universals about female beauty and concern for ‘woman’s identity’ (we focused our analysis on products designed for female consumers). This study, complementing previous studies, aims to be a contribution to the description of laws and strategies that guide the translation of advertising texts into Russian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of Next Generation Sequencing promotes Biology in the Big Data era. The ever-increasing gap between proteins with known sequences and those with a complete functional annotation requires computational methods for automatic structure and functional annotation. My research has been focusing on proteins and led so far to the development of three novel tools, DeepREx, E-SNPs&GO and ISPRED-SEQ, based on Machine and Deep Learning approaches. DeepREx computes the solvent exposure of residues in a protein chain. This problem is relevant for the definition of structural constraints regarding the possible folding of the protein. DeepREx exploits Long Short-Term Memory layers to capture residue-level interactions between positions distant in the sequence, achieving state-of-the-art performances. With DeepRex, I conducted a large-scale analysis investigating the relationship between solvent exposure of a residue and its probability to be pathogenic upon mutation. E-SNPs&GO predicts the pathogenicity of a Single Residue Variation. Variations occurring on a protein sequence can have different effects, possibly leading to the onset of diseases. E-SNPs&GO exploits protein embeddings generated by two novel Protein Language Models (PLMs), as well as a new way of representing functional information coming from the Gene Ontology. The method achieves state-of-the-art performances and is extremely time-efficient when compared to traditional approaches. ISPRED-SEQ predicts the presence of Protein-Protein Interaction sites in a protein sequence. Knowing how a protein interacts with other molecules is crucial for accurate functional characterization. ISPRED-SEQ exploits a convolutional layer to parse local context after embedding the protein sequence with two novel PLMs, greatly surpassing the current state-of-the-art. All methods are published in international journals and are available as user-friendly web servers. They have been developed keeping in mind standard guidelines for FAIRness (FAIR: Findable, Accessible, Interoperable, Reusable) and are integrated into the public collection of tools provided by ELIXIR, the European infrastructure for Bioinformatics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the inference problem is the posterior distribution of this parameter. A regular version of the posterior distribution in functional spaces is characterized. However, the infinite dimension of the considered spaces causes a problem of non continuity of the solution and then a problem of inconsistency, from a frequentist point of view, of the posterior distribution (i.e. problem of ill-posedness). The contribution of this essay is to propose new methods to deal with this problem of ill-posedness. The first one consists in adopting a Tikhonov regularization scheme in the construction of the posterior distribution so that I end up with a new object that I call regularized posterior distribution and that I guess it is solution of the inverse problem. The second approach consists in specifying a prior distribution on the parameter of interest of the g-prior type. Then, I detect a class of models for which the prior distribution is able to correct for the ill-posedness also in infinite dimensional problems. I study asymptotic properties of these proposed solutions and I prove that, under some regularity condition satisfied by the true value of the parameter of interest, they are consistent in a "frequentist" sense. Once I have set the general theory, I apply my bayesian nonparametric methodology to different estimation problems. First, I apply this estimator to deconvolution and to hazard rate, density and regression estimation. Then, I consider the estimation of an Instrumental Regression that is useful in micro-econometrics when we have to deal with problems of endogeneity. Finally, I develop an application in finance: I get the bayesian estimator for the equilibrium asset pricing functional by using the Euler equation defined in the Lucas'(1978) tree-type models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design optimization of industrial products has always been an essential activity to improve product quality while reducing time-to-market and production costs. Although cost management is very complex and comprises all phases of the product life cycle, the control of geometrical and dimensional variations, known as Dimensional Management (DM), allows compliance with product and process requirements. Hence, the tolerance-cost optimization becomes the main practice to provide an effective application of Design for Tolerancing (DfT) and Design to Cost (DtC) approaches by enabling a connection between product tolerances and associated manufacturing costs. However, despite the growing interest in this topic, a profitable application in the industry of these techniques is hampered by their complexity: the definition of a systematic framework is the key element to improving design optimization, enhancing the concurrent use of Computer-Aided tools and Model-Based Definition (MBD) practices. The present doctorate research aims to define and develop an integrated methodology for product/process design optimization, to better exploit the new capabilities of advanced simulations and tools. By implementing predictive models and multi-disciplinary optimization, a Computer-Aided Integrated framework for tolerance-cost optimization has been proposed to allow the integration of DfT and DtC approaches and their direct application for the design of automotive components. Several case studies have been considered, with the final application of the integrated framework on a high-performance V12 engine assembly, to achieve both functional targets and cost reduction. From a scientific point of view, the proposed methodology provides an improvement for the tolerance-cost optimization of industrial components. The integration of theoretical approaches and Computer-Aided tools allows to analyse the influence of tolerances on both product performance and manufacturing costs. The case studies proved the suitability of the methodology for its application in the industrial field, providing the identification of further areas for improvement and refinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with efficient solution of optimization problems of practical interest. The first part of the thesis deals with bin packing problems. The bin packing problem (BPP) is one of the oldest and most fundamental combinatorial optimiza- tion problems. The bin packing problem and its generalizations arise often in real-world ap- plications, from manufacturing industry, logistics and transportation of goods, and scheduling. After an introductory chapter, I will present two applications of two of the most natural extensions of the bin packing: Chapter 2 will be dedicated to an application of bin packing in two dimension to a problem of scheduling a set of computational tasks on a computer cluster, while Chapter 3 deals with the generalization of BPP in three dimensions that arise frequently in logistic and transportation, often com- plemented with additional constraints on the placement of items and characteristics of the solution, like, for example, guarantees on the stability of the items, to avoid potential damage to the transported goods, on the distribution of the total weight of the bins, and on compatibility with loading and unloading operations. The second part of the thesis, and in particular Chapter 4 considers the Trans- mission Expansion Problem (TEP), where an electrical transmission grid must be expanded so as to satisfy future energy demand at the minimum cost, while main- taining some guarantees of robustness to potential line failures. These problems are gaining importance in a world where a shift towards renewable energy can impose a significant geographical reallocation of generation capacities, resulting in the ne- cessity of expanding current power transmission grids.