13 resultados para Probabilistic latent semantic model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.
Resumo:
There are different ways to do cluster analysis of categorical data in the literature and the choice among them is strongly related to the aim of the researcher, if we do not take into account time and economical constraints. Main approaches for clustering are usually distinguished into model-based and distance-based methods: the former assume that objects belonging to the same class are similar in the sense that their observed values come from the same probability distribution, whose parameters are unknown and need to be estimated; the latter evaluate distances among objects by a defined dissimilarity measure and, basing on it, allocate units to the closest group. In clustering, one may be interested in the classification of similar objects into groups, and one may be interested in finding observations that come from the same true homogeneous distribution. But do both of these aims lead to the same clustering? And how good are clustering methods designed to fulfil one of these aims in terms of the other? In order to answer, two approaches, namely a latent class model (mixture of multinomial distributions) and a partition around medoids one, are evaluated and compared by Adjusted Rand Index, Average Silhouette Width and Pearson-Gamma indexes in a fairly wide simulation study. Simulation outcomes are plotted in bi-dimensional graphs via Multidimensional Scaling; size of points is proportional to the number of points that overlap and different colours are used according to the cluster membership.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on.
Resumo:
Two of the main features of today complex software systems like pervasive computing systems and Internet-based applications are distribution and openness. Distribution revolves around three orthogonal dimensions: (i) distribution of control|systems are characterised by several independent computational entities and devices, each representing an autonomous and proactive locus of control; (ii) spatial distribution|entities and devices are physically distributed and connected in a global (such as the Internet) or local network; and (iii) temporal distribution|interacting system components come and go over time, and are not required to be available for interaction at the same time. Openness deals with the heterogeneity and dynamism of system components: complex computational systems are open to the integration of diverse components, heterogeneous in terms of architecture and technology, and are dynamic since they allow components to be updated, added, or removed while the system is running. The engineering of open and distributed computational systems mandates for the adoption of a software infrastructure whose underlying model and technology could provide the required level of uncoupling among system components. This is the main motivation behind current research trends in the area of coordination middleware to exploit tuple-based coordination models in the engineering of complex software systems, since they intrinsically provide coordinated components with communication uncoupling and further details in the references therein. An additional daunting challenge for tuple-based models comes from knowledge-intensive application scenarios, namely, scenarios where most of the activities are based on knowledge in some form|and where knowledge becomes the prominent means by which systems get coordinated. Handling knowledge in tuple-based systems induces problems in terms of syntax - e.g., two tuples containing the same data may not match due to differences in the tuple structure - and (mostly) of semantics|e.g., two tuples representing the same information may not match based on a dierent syntax adopted. Till now, the problem has been faced by exploiting tuple-based coordination within a middleware for knowledge intensive environments: e.g., experiments with tuple-based coordination within a Semantic Web middleware (surveys analogous approaches). However, they appear to be designed to tackle the design of coordination for specic application contexts like Semantic Web and Semantic Web Services, and they result in a rather involved extension of the tuple space model. The main goal of this thesis was to conceive a more general approach to semantic coordination. In particular, it was developed the model and technology of semantic tuple centres. It is adopted the tuple centre model as main coordination abstraction to manage system interactions. A tuple centre can be seen as a programmable tuple space, i.e. an extension of a Linda tuple space, where the behaviour of the tuple space can be programmed so as to react to interaction events. By encapsulating coordination laws within coordination media, tuple centres promote coordination uncoupling among coordinated components. Then, the tuple centre model was semantically enriched: a main design choice in this work was to try not to completely redesign the existing syntactic tuple space model, but rather provide a smooth extension that { although supporting semantic reasoning { keep the simplicity of tuple and tuple matching as easier as possible. By encapsulating the semantic representation of the domain of discourse within coordination media, semantic tuple centres promote semantic uncoupling among coordinated components. The main contributions of the thesis are: (i) the design of the semantic tuple centre model; (ii) the implementation and evaluation of the model based on an existent coordination infrastructure; (iii) a view of the application scenarios in which semantic tuple centres seem to be suitable as coordination media.
Resumo:
Many industries and academic institutions share the vision that an appropriate use of information originated from the environment may add value to services in multiple domains and may help humans in dealing with the growing information overload which often seems to jeopardize our life. It is also clear that information sharing and mutual understanding between software agents may impact complex processes where many actors (humans and machines) are involved, leading to relevant socioeconomic benefits. Starting from these two input, architectural and technological solutions to enable “environment-related cooperative digital services” are here explored. The proposed analysis starts from the consideration that our environment is physical space and here diversity is a major value. On the other side diversity is detrimental to common technological solutions, and it is an obstacle to mutual understanding. An appropriate environment abstraction and a shared information model are needed to provide the required levels of interoperability in our heterogeneous habitat. This thesis reviews several approaches to support environment related applications and intends to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may become a flexible and powerful solution to support interoperable services in virtually any domain and even in cross-domain scenarios. It also shows that semantic technologies can be fruitfully applied not only to represent application domain knowledge. For example semantic modeling of Human-Computer Interaction may support interaction interoperability and transformation of interaction primitives into actions, and the thesis shows how smart-space-based platforms driven by an interaction ontology may enable natural ad flexible ways of accessing resources and services, e.g, with gestures. An ontology for computational flow execution has also been built to represent abstract computation, with the goal of exploring new ways of scheduling computation flows with smart-space-based semantic platforms.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
The aim of the thesis is to propose a Bayesian estimation through Markov chain Monte Carlo of multidimensional item response theory models for graded responses with complex structures and correlated traits. In particular, this work focuses on the multiunidimensional and the additive underlying latent structures, considering that the first one is widely used and represents a classical approach in multidimensional item response analysis, while the second one is able to reflect the complexity of real interactions between items and respondents. A simulation study is conducted to evaluate the parameter recovery for the proposed models under different conditions (sample size, test and subtest length, number of response categories, and correlation structure). The results show that the parameter recovery is particularly sensitive to the sample size, due to the model complexity and the high number of parameters to be estimated. For a sufficiently large sample size the parameters of the multiunidimensional and additive graded response models are well reproduced. The results are also affected by the trade-off between the number of items constituting the test and the number of item categories. An application of the proposed models on response data collected to investigate Romagna and San Marino residents' perceptions and attitudes towards the tourism industry is also presented.
Resumo:
The research aims at developing a framework for semantic-based digital survey of architectural heritage. Rooted in knowledge-based modeling which extracts mathematical constraints of geometry from architectural treatises, as-built information of architecture obtained from image-based modeling is integrated with the ideal model in BIM platform. The knowledge-based modeling transforms the geometry and parametric relation of architectural components from 2D printings to 3D digital models, and create large amount variations based on shape grammar in real time thanks to parametric modeling. It also provides prior knowledge for semantically segmenting unorganized survey data. The emergence of SfM (Structure from Motion) provides access to reconstruct large complex architectural scenes with high flexibility, low cost and full automation, but low reliability of metric accuracy. We solve this problem by combing photogrammetric approaches which consists of camera configuration, image enhancement, and bundle adjustment, etc. Experiments show the accuracy of image-based modeling following our workflow is comparable to that from range-based modeling. We also demonstrate positive results of our optimized approach in digital reconstruction of portico where low-texture-vault and dramatical transition of illumination bring huge difficulties in the workflow without optimization. Once the as-built model is obtained, it is integrated with the ideal model in BIM platform which allows multiple data enrichment. In spite of its promising prospect in AEC industry, BIM is developed with limited consideration of reverse-engineering from survey data. Besides representing the architectural heritage in parallel ways (ideal model and as-built model) and comparing their difference, we concern how to create as-built model in BIM software which is still an open area to be addressed. The research is supposed to be fundamental for research of architectural history, documentation and conservation of architectural heritage, and renovation of existing buildings.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
Model misspecification affects the classical test statistics used to assess the fit of the Item Response Theory (IRT) models. Robust tests have been derived under model misspecification, as the Generalized Lagrange Multiplier and Hausman tests, but their use has not been largely explored in the IRT framework. In the first part of the thesis, we introduce the Generalized Lagrange Multiplier test to detect differential item response functioning in IRT models for binary data under model misspecification. By means of a simulation study and a real data analysis, we compare its performance with the classical Lagrange Multiplier test, computed using the Hessian and the cross-product matrix, and the Generalized Jackknife Score test. The power of these tests is computed empirically and asymptotically. The misspecifications considered are local dependence among items and non-normal distribution of the latent variable. The results highlight that, under mild model misspecification, all tests have good performance while, under strong model misspecification, the performance of the tests deteriorates. None of the tests considered show an overall superior performance than the others. In the second part of the thesis, we extend the Generalized Hausman test to detect non-normality of the latent variable distribution. To build the test, we consider a seminonparametric-IRT model, that assumes a more flexible latent variable distribution. By means of a simulation study and two real applications, we compare the performance of the Generalized Hausman test with the M2 limited information goodness-of-fit test and the Likelihood-Ratio test. Additionally, the information criteria are computed. The Generalized Hausman test has a better performance than the Likelihood-Ratio test in terms of Type I error rates and the M2 test in terms of power. The performance of the Generalized Hausman test and the information criteria deteriorates when the sample size is small and with a few items.
Resumo:
Personal archives are the archives created by individuals for their own purposes. Among these are the library and documentary collections of writers and scholars. It is only recently that archival literature has begun to focus on this category of archives, emphasising how their heterogeneous nature necessitates the conciliation of different approaches to archival description, and calling for a broader understanding of the principle of provenance, recognising that multiple creators, including subsequent researchers, can contribute to shaping personal archives over time by adding new layers of contexts. Despite these advances in the theoretical debate, current architectures for archival representation remain behind. Finding aids privilege a single point of view and do not allow subsequent users to embed their own, potentially conflicting, readings. Using semantic web technologies this study aims to define a conceptual model for writers' archives based on existing and widely adopted models in the cultural heritage and humanities domains. The model developed can be used to represent different types of documents at various levels of analysis, as well as record content and components. It also enables the representation of complex relationships and the incorporation of additional layers of interpretation into the finding aid, transforming it from a static search tool into a dynamic research platform. The personal archive and library of Giuseppe Raimondi serves as a case study for the creation of an archival knowledge base using the proposed conceptual model. By querying the knowledge graph through SPARQL, the effectiveness of the model is evaluated. The results demonstrate that the model addresses the primary representation challenges identified in archival literature, from both a technological and methodological standpoint. The ultimate goal is to bring the output par excellence of archival science, i.e. the finding aid, more in line with the latest developments in archival thinking.