11 resultados para Principal Component Analysis (PCA)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Coastal sand dunes represent a richness first of all in terms of defense from the sea storms waves and the saltwater ingression; moreover these morphological elements constitute an unique ecosystem of transition between the sea and the land environment. The research about dune system is a strong part of the coastal sciences, since the last century. Nowadays this branch have assumed even more importance for two reasons: on one side the born of brand new technologies, especially related to the Remote Sensing, have increased the researcher possibilities; on the other side the intense urbanization of these days have strongly limited the dune possibilities of development and fragmented what was remaining from the last century. This is particularly true in the Ravenna area, where the industrialization united to the touristic economy and an intense subsidence, have left only few dune ridges residual still active. In this work three different foredune ridges, along the Ravenna coast, have been studied with Laser Scanner technology. This research didn’t limit to analyze volume or spatial difference, but try also to find new ways and new features to monitor this environment. Moreover the author planned a series of test to validate data from Terrestrial Laser Scanner (TLS), with the additional aim of finalize a methodology to test 3D survey accuracy. Data acquired by TLS were then applied on one hand to test some brand new applications, such as Digital Shore Line Analysis System (DSAS) and Computational Fluid Dynamics (CFD), to prove their efficacy in this field; on the other hand the author used TLS data to find any correlation with meteorological indexes (Forcing Factors), linked to sea and wind (Fryberger's method) applying statistical tools, such as the Principal Component Analysis (PCA).
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).
Resumo:
Il presente lavoro si compone di tre capitoli, tra loro autonomi e allo stesso tempo intrinsecamente collegati. Nel primo capitolo si è voluto offrire una panoramica dello scenario agroalimentare italiano e della sua rilevanza nel sistema economico nazionale. Per fare ciò si è partiti da una disamina del contesto economico mondiale per poi centrare il discorso sull’andamento congiunturale dell’agroalimentare nazionale, analizzato secondo i principali indicatori macroeconomici. Successivamente vengono presentati gli attori del sistema agroalimentare, rilevando per ciascuno di essi le proprie specificità e tendenze. L’ultima parte del primo capitolo è un focus specifico sul ruolo giocato dall’agroalimentare italiano nel commercio e nei mercati internazionali. Nel secondo capitolo si è approntata una mappatura territoriale e per comparti delle principali specializzazioni commerciali del settore agroalimentare delle regioni italiane. Tramite l'utilizzo di appositi indici di specializzazione si è analizzata la realtà agroalimentare delle regioni italiane, mettendone in evidenza la struttura competitiva e approssimandola tramite l’analisi dei vantaggi comparati di cui gode. Infine, nel terzo capitolo, si è ampliato il campo d'analisi tentando di misurare il livello di internazionalizzazione delle regioni italiane, non solo in ambito agroalimentare, ma considerando l'intero sistema territoriale regionale. Si è tentato di fare ciò tramite tre strumenti: l’analisi delle componenti principali (PCA o ACP), il Mazziotta-Pareto Index e il Wroclaw taxonomic method. I risultati ottenuti tramite le tre modalità di elaborazione hanno permesso di approfondire la conoscenza del livello di internazionalizzazione registrato dalle regioni italiane, mettendo in luce ulteriori filoni di ricerca della tematica osservata.
Resumo:
The present PhD thesis was focused on the development and application of chemical methodology (Py-GC-MS) and data-processing method by multivariate data analysis (chemometrics). The chromatographic and mass spectrometric data obtained with this technique are particularly suitable to be interpreted by chemometric methods such as PCA (Principal Component Analysis) as regards data exploration and SIMCA (Soft Independent Models of Class Analogy) for the classification. As a first approach, some issues related to the field of cultural heritage were discussed with a particular attention to the differentiation of binders used in pictorial field. A marker of egg tempera the phosphoric acid esterified, a pyrolysis product of lecithin, was determined using HMDS (hexamethyldisilazane) rather than the TMAH (tetramethylammonium hydroxide) as a derivatizing reagent. The validity of analytical pyrolysis as tool to characterize and classify different types of bacteria was verified. The FAMEs chromatographic profiles represent an important tool for the bacterial identification. Because of the complexity of the chromatograms, it was possible to characterize the bacteria only according to their genus, while the differentiation at the species level has been achieved by means of chemometric analysis. To perform this study, normalized areas peaks relevant to fatty acids were taken into account. Chemometric methods were applied to experimental datasets. The obtained results demonstrate the effectiveness of analytical pyrolysis and chemometric analysis for the rapid characterization of bacterial species. Application to a samples of bacterial (Pseudomonas Mendocina), fungal (Pleorotus ostreatus) and mixed- biofilms was also performed. A comparison with the chromatographic profiles established the possibility to: • Differentiate the bacterial and fungal biofilms according to the (FAMEs) profile. • Characterize the fungal biofilm by means the typical pattern of pyrolytic fragments derived from saccharides present in the cell wall. • Individuate the markers of bacterial and fungal biofilm in the same mixed-biofilm sample.
Resumo:
Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.
Resumo:
The purpose of this Thesis is to develop a robust and powerful method to classify galaxies from large surveys, in order to establish and confirm the connections between the principal observational parameters of the galaxies (spectral features, colours, morphological indices), and help unveil the evolution of these parameters from $z \sim 1$ to the local Universe. Within the framework of zCOSMOS-bright survey, and making use of its large database of objects ($\sim 10\,000$ galaxies in the redshift range $0 < z \lesssim 1.2$) and its great reliability in redshift and spectral properties determinations, first we adopt and extend the \emph{classification cube method}, as developed by Mignoli et al. (2009), to exploit the bimodal properties of galaxies (spectral, photometric and morphologic) separately, and then combining together these three subclassifications. We use this classification method as a test for a newly devised statistical classification, based on Principal Component Analysis and Unsupervised Fuzzy Partition clustering method (PCA+UFP), which is able to define the galaxy population exploiting their natural global bimodality, considering simultaneously up to 8 different properties. The PCA+UFP analysis is a very powerful and robust tool to probe the nature and the evolution of galaxies in a survey. It allows to define with less uncertainties the classification of galaxies, adding the flexibility to be adapted to different parameters: being a fuzzy classification it avoids the problems due to a hard classification, such as the classification cube presented in the first part of the article. The PCA+UFP method can be easily applied to different datasets: it does not rely on the nature of the data and for this reason it can be successfully employed with others observables (magnitudes, colours) or derived properties (masses, luminosities, SFRs, etc.). The agreement between the two classification cluster definitions is very high. ``Early'' and ``late'' type galaxies are well defined by the spectral, photometric and morphological properties, both considering them in a separate way and then combining the classifications (classification cube) and treating them as a whole (PCA+UFP cluster analysis). Differences arise in the definition of outliers: the classification cube is much more sensitive to single measurement errors or misclassifications in one property than the PCA+UFP cluster analysis, in which errors are ``averaged out'' during the process. This method allowed us to behold the \emph{downsizing} effect taking place in the PC spaces: the migration between the blue cloud towards the red clump happens at higher redshifts for galaxies of larger mass. The determination of $M_{\mathrm{cross}}$ the transition mass is in significant agreement with others values in literature.
Resumo:
Introduzione: La sindrome delle gambe senza riposo (RLS) è un disturbo caratterizzato da sensazione spiacevole disestesica generalmente agli arti inferiori, che si presenta o peggiora nelle ore serali-notturne e che migliora con il movimento. Studi clinici hanno mostrato una maggiore prevalenza di RLS negli emicranici, mentre mancano studi condotti su popolazione generale non selezionata. Lo scopo di questo studio era quello di valutare la associazione tra emicrania e RLS in una popolazione italiana adulta. Inoltre è stata valutata l’associazione tra RLS e cefalea fenotipizzata attraverso metodica di principal components analysis (PCA). Materiali e metodi: la presenza di RLS e di emicrania è stata determinata attraverso questionari basati sui criteri diagnostici correnti in un campione di 1567 partecipanti di un fase preliminare di uno studio in corso sulla popolazione adulta della Val Venosta (BZ). Risultati: gli emicranici hanno presentato un significativo maggior rischio di soffrire di RLS rispetto ai non emicranici, anche dopo aggiustamento per fattori confondenti come età, sesso, depressione, ansia e qualità del sonno (p = 0.049). Questa associazione non era modificata dalla presenza di aura emicranica, di cause possibili di RLS secondaria e dalla frequenza di attacchi emicranici. Inoltre la RLS non era risultata significativamente associata alla cefalea di tipo tensivo (TTH). Dall’analisi di associazione tra RLS e cefalea fenotipizzata attraverso PCA era emerso che la componente 1, caratterizzata da sintomi di sensitivizzazione del sistema nervoso centrale (SNC), correlava significativamente con la presenza di RLS (p = 0.021). Conclusioni: RLS ed emicrania sono risultate associate nel nostro campione di popolazione adulta; inoltre la RLS ha mostrato una correlazione significativa con i sintomi di sensitivizzazione del SNC legati agli attacchi di cefalea. Questa associazione potrebbe risiedere in una possibile base patogenetica comune.
Resumo:
This study focuses on the use of metabonomics applications in measuring fish freshness in various biological species and in evaluating how they are stored. This metabonomic approach is innovative and is based upon molecular profiling through nuclear magnetic resonance (NMR). On one hand, the aim is to ascertain if a type of fish has maintained, within certain limits, its sensory and nutritional characteristics after being caught; and on the second, the research observes the alterations in the product’s composition. The spectroscopic data obtained through experimental nuclear magnetic resonance, 1H-NMR, of the molecular profiles of the fish extracts are compared with those obtained on the same samples through analytical and conventional methods now in practice. These second methods are used to obtain chemical indices of freshness through biochemical and microbial degradation of the proteic nitrogen compounds and not (trimethylamine, N-(CH3)3, nucleotides, amino acids, etc.). At a later time, a principal components analysis (PCA) and a linear discriminant analysis (PLS-DA) are performed through a metabonomic approach to condense the temporal evolution of freshness into a single parameter. In particular, the first principal component (PC1) under both storage conditions (4 °C and 0 °C) represents the component together with the molecular composition of the samples (through 1H-NMR spectrum) evolving during storage with a very high variance. The results of this study give scientific evidence supporting the objective elements evaluating the freshness of fish products showing those which can be labeled “fresh fish.”
Resumo:
Systemic risk is the protagonist of the recent financial crisis. This thesis proposes a definition and a propagation mechanism for systemic risk. Risk management has a direct linkage with capital management, when addressing the question that the risk handled by a financial institution is compatible with the amount of equity available. This thesis proposes a risk management of liquid market variables, which compose the assets of a bank, based on the statistical tool of PCA. The principal component analysis will define the PCR, or Principal Components of Risk. Such definition of Risk will be adopted to test if the risk represented by PCR is explanatory of the movements of equity and/or debt for the banks included in the in the index Itraxx financial senior: the results of these regressions will be compared with a formal Capital Adequacy test in order to assess the financial soundness of the main financial European institutions.
Resumo:
Food Security has become an important issue in the international debate, particularly during the latest economic crisis. It relevant issue also for the Mediterranean Countries (MCs), particularly those of the southern shore, as they are is facing complex economic and social changes. On the one hand there is the necessity to satisfy the increasing and changing food demand of the growing population; on the other hand it is important to promote economic growth and adjust the agricultural production to food demand in a sustainable perspective. The assessment of food security conditions is a challenging task due to the multi-dimensional nature and complexity of the matter. Many papers in the scientific literature focus on the nutritional aspects of food security, while its economic issues have been addressed less frequently and only in recent times. Thus, the main objective of the research is to assess food (in)security conditions in the MCs. The study intends to identify and implement appropriate theoretical concepts and methodological tools to be used in the assessment of food security, with a particular emphasis on its economic dimension within MCs. The study follows a composite methodological approach, based on the identification and selection of a number of relevant variables, a refined set of indicators is identified by means of a two-step Principal Component Analysis applied to 90 countries and the PCA findings have been studied with particular attention to the MCs food security situation. The results of the study show that MCs have an higher economic development compared to low-income countries, however the economic and social disparities of this area show vulnerability to food (in)security, due to: dependency on food imports, lack of infrastructure and agriculture investment, climate condition and political stability and inefficiency. In conclusion, the main policy implications of food (in)security conditions in MCs are discussed.