8 resultados para Primary and secondary schools
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Il lavoro svolto in questa tesi si propone di valutare la variabilità della composizione corporea nell’infanzia e nell’adolescenza, con particolare attenzione alla transizione dalla prima alla seconda, in relazione allo stato nutrizionale ed agli stili di vita. Lo studio è stato condotto eseguendo misure antropometriche presso scuole primarie e secondarie di Bologna. Sono stati analizzati inoltre dati acquisiti a partire dal 2004. Il campione analizzato comprende 3546 soggetti di età compresa tra 6 anni e 14 anni. In particolare sono state analizzate le principali misurazioni utili per il calcolo della composizione corporea, evidenziando i parametri antropometrici principali quali BMI, circonferenza vita, WHR, %F e FFM. Questi caratteri sono stati quindi messi in relazione con le informazioni inerenti l’attività sportiva extrascolastica e gli stili di vita dei soggetti esaminati. L’analisi trasversale delle principali caratteristiche antropometriche ha fornito un interessante panorama della situazione italiana e del nord Italia; lo studio longitudinale delle variabili antropometriche permette di ottenere un quadro aggiornato dei principali incrementi delle misure corporee. La valutazione della variabilità della composizione corporea in relazione all’attività sportiva e allo stile di vita durante il processo di accrescimento ha indicato come abitudini sane e propensione all’attività motoria sono sicuramente in grado di apportare miglioramenti nella modificazione della composizione corporea nel processo evolutivo specialmente se somministrate con modalità adeguate all’età e alle esigenze individuali. Questi aspetti sono certamente rilevanti e complessi, sarebbe infatti interessante in prospettiva futura riuscire ad indagare ancora più dettagliatamente sull’interazione tra i fattori che determinano e modificano la composizione corporea in un periodo della vita così particolare come la transizione dall’infanzia all’adolescenza.
Resumo:
The main objective of this research is to improve the comprehension of the processes controlling the formation of caves and karst-like morphologies in quartz-rich lithologies (more than 90% quartz), like quartz-sandstones and metamorphic quartzites. In the scientific community the processes actually most retained to be responsible of these formations are explained in the “Arenisation Theory”. This implies a slow but pervasive dissolution of the quartz grain/mineral boundaries increasing the general porosity until the rock becomes incohesive and can be easily eroded by running waters. The loose sands produced by the weathering processes are then evacuated to the surface through processes of piping due to the infiltration of waters from the fracture network or the bedding planes. To deal with these problems we adopted a multidisciplinary approach through the exploration and the study of several cave systems in different tepuis. The first step was to build a theoretical model of the arenisation process, considering the most recent knowledge about the dissolution kinetics of quartz, the intergranular/grain boundaries diffusion processes, the primary diffusion porosity, in the simplified conditions of an open fracture crossed by a continuous flow of undersatured water. The results of the model were then compared with the world’s widest dataset (more than 150 analyses) of water geochemistry collected till now on the tepui, in superficial and cave settings. All these studies allowed verifying the importance and the effectiveness of the arenisation process that is confirmed to be the main process responsible of the primary formation of these caves and of the karst-like superficial morphologies. The numerical modelling and the field observations allowed evaluating a possible age of the cave systems around 20-30 million of years.
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.
Resumo:
Objective: To investigate the prognostic significance of ST-segment elevation (STE) in aVR associated with ST-segment depression (STD) in other leads in patients with non-STE acute coronary syndrome (NSTE-ACS). Background: In NSTE-ACS patients, STD has been extensively associated with severe coronary lesions and poor outcomes. The prognostic role of STE in aVR is uncertain. Methods: We enrolled 888 consecutive patients with NSTE-ACS. They were divided into two groups according to the presence or not on admission ECG of aVR STE≥ 1mm and STD (defined as high risk ECG pattern). The primary and secondary endpoints were: in-hospital cardiovascular (CV) death and the rate of culprit left main disease (LMD). Results: Patients with high risk ECG pattern (n=121) disclosed a worse clinical profile compared to patients (n=575) without [median GRACE (Global-Registry-of-Acute-Coronary-Events) risk score =142 vs. 182, respectively]. A total of 75% of patients underwent coronary angiography. The rate of in-hospital CV death was 3.9%. On multivariable analysis patients who had the high risk ECG pattern showed an increased risk of CV death (OR=2.88, 95%CI 1.05-7.88) and culprit LMD (OR=4.67,95%CI 1.86-11.74) compared to patients who had not. The prognostic significance of the high risk ECG pattern was maintained even after adjustment for the GRACE risk score (OR = 2.28, 95%CI:1.06-4.93 and OR = 4.13, 95%CI:2.13-8.01, for primary and secondary endpoint, respectively). Conclusions: STE in aVR associated with STD in other leads predicts in-hospital CV death and culprit LMD. This pattern may add prognostic information in patients with NSTE-ACS on top of recommended scoring system.
Resumo:
Lipolysis and oxidation of lipids in foods are the major biochemical and chemical processes that cause food quality deterioration, leading to the characteristic, unpalatable odour and flavour called rancidity. In addition to unpalatability, rancidity may give rise to toxic levels of certain compounds like aldehydes, hydroperoxides, epoxides and cholesterol oxidation products. In this PhD study chromatographic and spectroscopic techniques were employed to determine the degree of lipid oxidation in different animal products and its relationship with technological parameters like feeding fat sources, packaging, processing and storage conditions. To achieve this goal capillary gas chromatography (CGC) was employed not only to determine the fatty acids profile but also, after solid phase extraction, the amount of sterols (cholesterol and phytosterols) and cholesterol oxidation products (COPs). To determine hydroperoxides, primary products of oxidation and quantify secondary products UV/VIS absorbance spectroscopy was applied. Beef and pork meat in this study were analysed. In actual fact, lipid oxidation is a major deterioration reaction in meat, meat products and results in adverse changes in the colour, flavour, texture of meat and develops different compounds which should be a risk to human health as oxysterols. On beef and pork meat, a study of lipid fraction during storage was carried out to evaluate its shelf-life and some nutritional features life saturated/unsaturated fatty acids ratio and sterols content, in according to the interest that has been growing around functional food in the last years. The last part of this research was focused on the study of lipid oxidation in emulsions. In oil-in-water emulsions antioxidant activity of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was evaluated. The rates of lipid oxidation of 1.0% stripped soybean oil-in-water emulsions with DOPC were followed by monitoring lipid hydroperoxide and hexanal as indicators of primary and secondary oxidation products and the droplet surface charge or zeta potential (ζ) of the emulsions with varying concentrations of DOPC were tested. This manuscript reports the main results obtained in the three activities briefly summarized as follows: 1. study on effects of feeding composition on the photoxidative stability of lipids from beef meat, evaluated during storage under commercial retail conditions; 2. evaluation of effects of diets and storage conditions on the oxidative stability of pork meat lipids; 3. study on oxidative behavior of DOPC in stripped soybean oil-in-water emulsions stabilized by nonionic surfactant.
Resumo:
In two Italian sites, multiaxis trees slightly reduced primary axis length and secondary axis length of newly grafted trees, and increased the number of secondary shoots. The total length, node production, and total dry matter gain were proportional to the number of axis. Growth of both primary and secondary shoots, and dry matter accumulation, have been found to be also well related to rootstock vigour. A great variability in axillary shoot production was recorded among different environments. Grafted trees had higher primary growth, secondary axis growth, and dry matter gain than chip budded trees. Stem water potential measured in the second year after grafting was not affected by rootstocks or number of leaders. Measurements performed in New Zealand (Hawke’s Bay) during the second year after grafting revealed that both final length and growth rate of primary and secondary axis were related to the rootstock rather than to the training system. Dwarfing rootstocks reduced the number of long vegetative shoots and increased the proportion of less vigorous shoots.
Resumo:
The dissertation is structured in three parts. The first part compares US and EU agricultural policies since the end of WWII. There is not enough evidence for claiming that agricultural support has a negative impact on obesity trends. I discuss the possibility of an exchange in best practices to fight obesity. There are relevant economic, societal and legal differences between the US and the EU. However, partnerships against obesity are welcomed. The second part presents a socio-ecological model of the determinants of obesity. I employ an interdisciplinary model because it captures the simultaneous influence of several variables. Obesity is an interaction of pre-birth, primary and secondary socialization factors. To test the significance of each factor, I use data from the National Longitudinal Survey of Adolescent Health. I compare the average body mass index across different populations. Differences in means are statistically significant. In the last part I use the National Survey of Children Health. I analyze the effect that family characteristics, built environment, cultural norms and individual factors have on the body mass index (BMI). I use Ordered Probit models and I calculate the marginal effects. I use State and ethnicity fixed effects to control for unobserved heterogeneity. I find that southern US States tend have on average a higher probability of being obese. On the ethnicity side, White Americans have a lower BMI respect to Black Americans, Hispanics and American Indians Native Islanders; being Asian is associated with a lower probability of being obese. In neighborhoods where trust level and safety perception are higher, children are less overweight and obese. Similar results are shown for higher level of parental income and education. Breastfeeding has a negative impact. Higher values of measures of behavioral disorders have a positive and significant impact on obesity, as predicted by the theory.
Resumo:
Primary angioplasty has been shown to be more effective than fibrinolysis in terms of mortality and adverse outcomes. More recent data, however, suggests that timely reperfusion with fibrinolysis is comparable to primary angioplasty. The current study gathered data from the International Survey of Acute Coronary Syndromes in Transitional Countries registry. Among 7406 ST-elevation myocardial infarction patients presenting within 12 hours from symptom onset, 6315 underwent primary percutaneous coronary intervention and 1091 were treated with fibrinolysis. The primary outcome was 30-day mortality, while the secondary outcome was a composite of 30-day incidence of death, severe left ventricular dysfunction, stroke or reinfarction. Patients who underwent primary angioplasty tended to have a greater cardiovascular risk profile and were slightly older. On the other hand, patients treated with fibrinolysis received less anti-platelet medications yet were more often prescribed beta blockers in the acute phase. Among those who received fibrinolysis, 43% underwent coronary angiography while 32.3% were treated with a subsequent angioplasty. Total ischemic time was lower in patients undergoing fibrinolysis (185 minutes) than in those treated with primary angioplasty (258 minutes). Rates of primary and secondary combined endpoints were higher in patients receiving fibrinolysis compared to those receiving primary angioplasty (7.8% vs. 4.1%; p<0.0001; OR 1.97, 95% CI, 1.38-2.81; and 14.8% vs. 10.1%, p<0.0001; OR 1.43, 95% CI, 1.12-1.81). When considering only patients receiving reperfusion within 3 hours, regardless of reperfusion strategy, differences in mortality (6.3% vs. 4%, p=0.094, for fibrinolysis or primary angioplasty, respectively; OR 0.87, 95% CI, 0.35-2.16) and in the combined secondary endpoint were no longer observed (12.9% vs 10.8%, p=0.33; OR 0.98, 95% CI, 0.58-1.64), and female sex was no longer a significant predictor of adverse outcomes. When performed 3 hours from symptom onset, fibrinolysis is safe and feasible, in terms of mortality and adverse outcomes, compared to primary angioplasty.