2 resultados para Preventing Deflagration

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central aim of this dissertation is to introduce innovative methods, models, and tools to enhance the overall performance of supply chains responsible for handling perishable products. This concept of improved performance encompasses several critical dimensions, including enhanced efficiency in supply chain operations, product quality, safety, sustainability, waste generation minimization, and compliance with norms and regulations. The research is structured around three specific research questions that provide a solid foundation for delving into and narrowing down the array of potential solutions. These questions primarily concern enhancing the overall performance of distribution networks for perishable products and optimizing the package hierarchy, extending to unconventional packaging solutions. To address these research questions effectively, a well-defined research framework guides the approach. However, the dissertation adheres to an overarching methodological approach that comprises three fundamental aspects. The first aspect centers on the necessity of systematic data sampling and categorization, including identifying critical points within food supply chains. The data collected in this context must then be organized within a customized data structure designed to feed both cyber-physical and digital twins to quantify and analyze supply chain failures with a preventive perspective.