16 resultados para Predictive model

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this dissertation is to develop and test a predictive model for the passive kinematics of human joints based on the energy minimization principle. To pursue this goal, the tibio-talar joint is chosen as a reference joint, for the reduced number of bones involved and its simplicity, if compared with other sinovial joints such as the knee or the wrist. Starting from the knowledge of the articular surface shapes, the spatial trajectory of passive motion is obtained as the envelop of joint configurations that maximize the surfaces congruence. An increase in joint congruence corresponds to an improved capability of distributing an applied load, allowing the joint to attain a better strength with less material. Thus, joint congruence maximization is a simple geometric way to capture the idea of joint energy minimization. The results obtained are validated against in vitro measured trajectories. Preliminary comparison provide strong support for the predictions of the theoretical model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Guidelines report a wide range of options in locally advanced pancreatic cancer (LAPC): definitive chemotherapy or chemoradiotherapy or the emerging stereotactic body radiotherapy (SBRT) (+/- chemotherapy). On behalf of the AIRO (Italian Association of Radiation Oncology and Clinical Oncology) Gastrointestinal Study Group, we collected retrospective clinical data on 419 LAPC from 15 Italian centers. The study protocol (PAULA-1: Pooled Analysis in Unresectable Locally Advanced pancreatic cancer) was approved by institutional review board of S. Orsola-Malpighi Hospital (201/2015/O/OssN). From this large database we performed tree different studies. The first was a retrospective study about 56 LAPC treated with SBRT at a median biologically equivalent dose of 48 Gy +/- chemotherapy. We demonstrated a statistically significant impact of biologically equivalent dose based on an α/β ratio of 10Gy ≥ 48Gy for local control (LC) (p: 0.045) and overall survival (p: 0.042) in LAPC. The second was a retrospective matched-cohort case-control study comparing SBRT (40 patients) and chemoradiation (40 patients) in LAPC in terms of different endpoints. Our findings suggested an equivalence in terms of most outcomes among the two treatments and an advantage of SBRT in terms of LC (p: 0.017). The third study was a retrospective comparison of definitive chemotherapy, chemoradiotherapy and SBRT (+/- chemotherapy) in terms of different outcomes in LAPC. A predictive model for LC in LAPC was also developed reaching an AUC of 68% (CI 58,7%-77,4%). SBRT treatment emerged as a positive predictive factor for improved LC. Findings deriving from our three studies suggest that SBRT is comparable to standard of care (definitive chemotherapy and chemoradiotherapy) in terms of outcomes. SBRT seems to be an emerging therapeutic option in LAPC significantly improving local control. Furthermore, we have shown the potential of a predictive model for LC. Randomized trials are needed to compare these different therapeutic options in LAPC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The great challenges of today pose great pressure on the food chain to provide safe and nutritious food that meets regulations and consumer health standards. In this context, Risk Analysis is used to produce an estimate of the risks to human health and to identify and implement effective risk-control measures. The aims of this work were 1) describe how QRA is used to evaluate the risk for consumers health, 2) address the methodology to obtain models to apply in QMRA; 3) evaluate solutions to mitigate the risk. The application of a QCRA to the Italian milk industry enabled the assessment of Aflatoxin M1 exposure, impact on different population categories, and comparison of risk-mitigation strategies. The results highlighted the most sensitive population categories, and how more stringent sampling plans reduced risk. The application of a QMRA to Spanish fresh cheeses evidenced how the contamination of this product with Listeria monocytogenes may generate a risk for the consumers. Two risk-mitigation actions were evaluated, i.e. reducing shelf life and domestic refrigerator temperature, both resulting effective in reducing the risk of listeriosis. A description of the most applied protocols for data generation for predictive model development, was provided to increase transparency and reproducibility and to provide the means to better QMRA. The development of a linear regression model describing the fate of Salmonella spp. in Italian salami during the production process and HPP was described. Alkaline electrolyzed water was evaluated for its potential use to reduce microbial loads on working surfaces, with results showing its effectiveness. This work showed the relevance of QRA, of predictive microbiology, and of new technologies to ensure food safety on a more integrated way. Filling of data gaps, the development of better models and the inclusion of new risk-mitigation strategies may lead to improvements in the presented QRAs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Falls are common and burdensome accidents among the elderly. About one third of the population aged 65 years or more experience at least one fall each year. Fall risk assessment is believed to be beneficial for fall prevention. This thesis is about prognostic tools for falls for community-dwelling older adults. We provide an overview of the state of the art. We then take different approaches: we propose a theoretical probabilistic model to investigate some properties of prognostic tools for falls; we present a tool whose parameters were derived from data of the literature; we train and test a data-driven prognostic tool. Finally, we present some preliminary results on prediction of falls through features extracted from wearable inertial sensors. Heterogeneity in validation results are expected from theoretical considerations and are observed from empirical data. Differences in studies design hinder comparability and collaborative research. According to the multifactorial etiology of falls, assessment on multiple risk factors is needed in order to achieve good predictive accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mesophotic zone is frequently defined as ranging between 30-40 and 150 m depth. However, these borders are necessarily imprecise due to variations in the penetration of light along the water column related to local factors. Moreover, density of data on mesophotic ecosystems vary along geographical distance, with temperate latitudes largely less explored than tropical situations. This is the case of the Mediterranean Sea, where information on mesophotic ecosystems is largely lower with respect to tropical situations. The lack of a clear definition of the borders of the mesophotic zone may represent a problem when information must be transferred to the policy that requires a coherent spatial definition to plan proper management and conservation measures. The present thesis aims at providing information on the spatial definition of the mesophotic zone in the Mediterranean Sea, its biodiversity and distribution of its ecosystems. The first chapter analyzes information on mesophotic ecosystems in the Mediterranean Sea to identify gaps in the literature and map the mesophotic zone in the Mediterranean Sea using light penetration estimated from satellite data. In the second chapter, different visual techniques to study mesophotic ecosystems are compared to identify the best analytical method to estimate diversity and habitat extension. In the third chapter, a set of Remotely Operated vehicles (ROV) surveys performed on mesophotic assemblages in the Mediterranean Sea are analyzed to describe their taxonomic and functional diversity and environmental factors influencing their structure. A Habitat Suitability Model is run in the fourth chapter to map the distribution of areas suitable for the presence of deep-water oyster reefs in the Adriatic-Ionian area. The fifth chapter explores the mesophotic zone in the northern Gulf of Mexico providing its spatial and vertical extension of the mesophotic zone and information on the diversity associated with mesophotic ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a challenging disease that involves multiple types of biological interactions in different time and space scales. Often computational modelling has been facing problems that, in the current technology level, is impracticable to represent in a single space-time continuum. To handle this sort of problems, complex orchestrations of multiscale models is frequently done. PRIMAGE is a large EU project that aims to support personalized childhood cancer diagnosis and prognosis. The goal is to do so predicting the growth of the solid tumour using multiscale in-silico technologies. The project proposes an open cloud-based platform to support decision making in the clinical management of paediatric cancers. The orchestration of predictive models is in general complex and would require a software framework that support and facilitate such task. The present work, proposes the development of an updated framework, referred herein as the VPH-HFv3, as a part of the PRIMAGE project. This framework, a complete re-writing with respect to the previous versions, aims to orchestrate several models, which are in concurrent development, using an architecture as simple as possible, easy to maintain and with high reusability. This sort of problem generally requires unfeasible execution times. To overcome this problem was developed a strategy of particularisation, which maps the upper-scale model results into a smaller number and homogenisation which does the inverse way and analysed the accuracy of this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.