18 resultados para Prediction model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.
Resumo:
The instability of river bank can result in considerable human and land losses. The Po river is the most important in Italy, characterized by main banks of significant and constantly increasing height. This study presents multilayer perceptron of artificial neural network (ANN) to construct prediction models for the stability analysis of river banks along the Po River, under various river and groundwater boundary conditions. For this aim, a number of networks of threshold logic unit are tested using different combinations of the input parameters. Factor of safety (FS), as an index of slope stability, is formulated in terms of several influencing geometrical and geotechnical parameters. In order to obtain a comprehensive geotechnical database, several cone penetration tests from the study site have been interpreted. The proposed models are developed upon stability analyses using finite element code over different representative sections of river embankments. For the validity verification, the ANN models are employed to predict the FS values of a part of the database beyond the calibration data domain. The results indicate that the proposed ANN models are effective tools for evaluating the slope stability. The ANN models notably outperform the derived multiple linear regression models.
Resumo:
Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).
Resumo:
High spectral resolution radiative transfer (RT) codes are essential tools in the study of the radiative energy transfer in the Earth atmosphere and a support for the development of parameterizations for fast RT codes used in climate and weather prediction models. Cirrus clouds cover permanently 30% of the Earth's surface, representing an important contribution to the Earth-atmosphere radiation balance. The work has been focussed on the development of the RT model LBLMS. The model, widely tested in the infra-red spectral range, has been extended to the short wave spectrum and it has been used in comparison with airborne and satellite measurements to study the optical properties of cirrus clouds. A new database of single scattering properties has been developed for mid latitude cirrus clouds. Ice clouds are treated as a mixture of ice crystals with various habits. The optical properties of the mixture are tested in comparison to radiometric measurements in selected case studies. Finally, a parameterization of the mixture for application to weather prediction and global circulation models has been developed. The bulk optical properties of ice crystals are parameterized as functions of the effective dimension of measured particle size distributions that are representative of mid latitude cirrus clouds. Tests with the Limited Area Weather Prediction model COSMO have shown the impact of the new parameterization with respect to cirrus cloud optical properties based on ice spheres.
Resumo:
Background and aims: Sorafenib is the reference therapy for advanced Hepatocellular Carcinoma (HCC). No method exists to predict in the very early period subsequent individual response. Starting from the clinical experience in humans that subcutaneous metastases may rapidly change consistency under sorafenib and that elastosonography a new ultrasound based technique allows assessment of tissue stiffness, we investigated the role of elastonography in the very early prediction of tumor response to sorafenib in a HCC animal model. Methods: HCC (Huh7 cells) subcutaneous xenografting in mice was utilized. Mice were randomized to vehicle or treatment with sorafenib when tumor size was 5-10 mm. Elastosonography (Mylab 70XVG, Esaote, Genova, Italy) of the whole tumor mass on a sagittal plane with a 10 MHz linear transducer was performed at different time points from treatment start (day 0, +2, +4, +7 and +14) until mice were sacrified (day +14), with the operator blind to treatment. In order to overcome variability in absolute elasticity measurement when assessing changes over time, values were expressed in arbitrary units as relative stiffness of the tumor tissue in comparison to the stiffness of a standard reference stand-off pad lying on the skin over the tumor. Results: Sor-treated mice showed a smaller tumor size increase at day +14 in comparison to vehicle-treated (tumor volume increase +192.76% vs +747.56%, p=0.06). Among Sor-treated tumors, 6 mice showed a better response to treatment than the other 4 (increase in volume +177% vs +553%, p=0.011). At day +2, median tumor elasticity increased in Sor-treated group (+6.69%, range –30.17-+58.51%), while decreased in the vehicle group (-3.19%, range –53.32-+37.94%) leading to a significant difference in absolute values (p=0.034). From this time point onward, elasticity decreased in both groups, with similar speed over time, not being statistically different anymore. In Sor-treated mice all 6 best responders at day 14 showed an increase in elasticity at day +2 (ranging from +3.30% to +58.51%) in comparison to baseline, whereas 3 of the 4 poorer responders showed a decrease. Interestingly, these 3 tumours showed elasticity values higher than responder tumours at day 0. Conclusions: Elastosonography appears a promising non-invasive new technique for the early prediction of HCC tumor response to sorafenib. Indeed, we proved that responder tumours are characterized by an early increase in elasticity. The possibility to distinguish a priori between responders and non responders based on the higher elasticity of the latter needs to be validated in ad-hoc experiments as well as a confirmation of our results in humans is warranted.
Resumo:
The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.
Resumo:
Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.
Resumo:
Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.
Resumo:
The development of a multibody model of a motorbike engine cranktrain is presented in this work, with an emphasis on flexible component model reduction. A modelling methodology based upon the adoption of non-ideal joints at interface locations, and the inclusion of component flexibility, is developed: both are necessary tasks if one wants to capture dynamic effects which arise in lightweight, high-speed applications. With regard to the first topic, both a ball bearing model and a journal bearing model are implemented, in order to properly capture the dynamic effects of the main connections in the system: angular contact ball bearings are modelled according to a five-DOF nonlinear scheme in order to grasp the crankshaft main bearings behaviour, while an impedance-based hydrodynamic bearing model is implemented providing an enhanced operation prediction at the conrod big end locations. Concerning the second matter, flexible models of the crankshaft and the connecting rod are produced. The well-established Craig-Bampton reduction technique is adopted as a general framework to obtain reduced model representations which are suitable for the subsequent multibody analyses. A particular component mode selection procedure is implemented, based on the concept of Effective Interface Mass, allowing an assessment of the accuracy of the reduced models prior to the nonlinear simulation phase. In addition, a procedure to alleviate the effects of modal truncation, based on the Modal Truncation Augmentation approach, is developed. In order to assess the performances of the proposed modal reduction schemes, numerical tests are performed onto the crankshaft and the conrod models in both frequency and modal domains. A multibody model of the cranktrain is eventually assembled and simulated using a commercial software. Numerical results are presented, demonstrating the effectiveness of the implemented flexible model reduction techniques. The advantages over the conventional frequency-based truncation approach are discussed.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.
Resumo:
Objective The objective of this study was to develop a clinical nomogram to predict gallium-68 prostate-specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA-11-PET/CT) positivity in different clinical settings of PSA failure. Materials and methods Seven hundred three (n = 703) prostate cancer (PCa) patients with confirmed PSA failure after radical therapy were enrolled. Patients were stratified according to different clinical settings (first-time biochemical recurrence [BCR]: group 1; BCR after salvage therapy: group 2; biochemical persistence after radical prostatectomy [BCP]: group 3; advanced stage PCa before second-line systemic therapies: group 4). First, we assessed 68Ga-PSMA-11-PET/CT positivity rate. Second, multivariable logistic regression analyses were used to determine predictors of positive scan. Third, regression-based coefficients were used to develop a nomogram predicting positive 68Ga-PSMA-11-PET/CT result and 200 bootstrap resamples were used for internal validation. Fourth, receiver operating characteristic (ROC) analysis was used to identify the most informative nomogram’s derived cut-off. Decision curve analysis (DCA) was implemented to quantify nomogram’s clinical benefit. Results 68Ga-PSMA-11-PET/CT overall positivity rate was 51.2%, while it was 40.3% in group 1, 54% in group 2, 60.5% in group 3, and 86.9% in group 4 (p < 0.001). At multivariable analyses, ISUP grade, PSA, PSA doubling time, and clinical setting were independent predictors of a positive scan (all p ≤ 0.04). A nomogram based on covariates included in the multivariate model demonstrated a bootstrap-corrected accuracy of 82%. The nomogram-derived best cut-off value was 40%. In DCA, the nomogram revealed clinical net benefit of > 10%. Conclusions This novel nomogram proved its good accuracy in predicting a positive scan, with values ≥ 40% providing the most informative cut-off in counselling patients to 68Ga-PSMA-11-PET/CT. This tool might be important as a guide to clinicians in the best use of PSMA-based PET imaging.
Resumo:
The thesis deals with the problem of Model Selection (MS) motivated by information and prediction theory, focusing on parametric time series (TS) models. The main contribution of the thesis is the extension to the multivariate case of the Misspecification-Resistant Information Criterion (MRIC), a criterion introduced recently that solves Akaike’s original research problem posed 50 years ago, which led to the definition of the AIC. The importance of MS is witnessed by the huge amount of literature devoted to it and published in scientific journals of many different disciplines. Despite such a widespread treatment, the contributions that adopt a mathematically rigorous approach are not so numerous and one of the aims of this project is to review and assess them. Chapter 2 discusses methodological aspects of MS from information theory. Information criteria (IC) for the i.i.d. setting are surveyed along with their asymptotic properties; and the cases of small samples, misspecification, further estimators. Chapter 3 surveys criteria for TS. IC and prediction criteria are considered for: univariate models (AR, ARMA) in the time and frequency domain, parametric multivariate (VARMA, VAR); nonparametric nonlinear (NAR); and high-dimensional models. The MRIC answers Akaike’s original question on efficient criteria, for possibly-misspecified (PM) univariate TS models in multi-step prediction with high-dimensional data and nonlinear models. Chapter 4 extends the MRIC to PM multivariate TS models for multi-step prediction introducing the Vectorial MRIC (VMRIC). We show that the VMRIC is asymptotically efficient by proving the decomposition of the MSPE matrix and the consistency of its Method-of-Moments Estimator (MoME), for Least Squares multi-step prediction with univariate regressor. Chapter 5 extends the VMRIC to the general multiple regressor case, by showing that the MSPE matrix decomposition holds, obtaining consistency for its MoME, and proving its efficiency. The chapter concludes with a digression on the conditions for PM VARX models.
Resumo:
Long air gaps containing a floating conductor are common insulation types in power grids. During the transmission line live-line work, the process of lineman entering the transmission line air gap constitutes a live-line work combined air gap, which is a typical long air gap containing a floating conductor. This thesis investigates the discharge characteristics, the discharge mechanism and a discharge simulation model of long air gaps containing a floating conductor in order to address the engineering issues in live-line work. The innovative achievements of the thesis are as follows: (1) The effect of the gap distance, the floating electrode structure, the switching impulse wavefront time, the altitude, and the deviation of the floating conductor from the axis on the breakdown voltage was determined. (2) The physical process of the discharges in long air gaps containing a floating conductor was determined. The reason why the discharge characteristics of long air gaps containing a floating electrode with complex geometrics and sharp protrusions and long air gaps with a rod-shaped floating electrode are similar has been studied. The formation mechanism of the lowest breakdown voltage area of a long air gap containing a floating conductor is explained. (3) A simulation discharge model of long air gaps containing a floating conductor was established, which can describe the physical process and predict the breakdown voltage. The model can realize the accurate prediction of the breakdown voltage of typical long air gaps containing a floating conductor and live-line work combined air gaps in transmission lines. The findings of the study can provide theoretical reference and technical support for improving the safety of live-line work.