5 resultados para Predatory animals
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Ultrasonography (US) is an essential imaging tool for identifying abnormalities of the liver parenchyma, biliary tract and vascular system. US has replaced radiography as the initial imaging procedure in screening for liver disease in small animals. There are few reports of the use of conventional and helical computed tomography (CT) to assess canine or feline parenchymal and neoplastic liver disease and biliary disorders. In human medicine the development of multidetector- row helical computed tomography (MDCT), with its superior spatial and temporal resolution, has resulted in improved detection and characterization of diffuse and focal liver lesions. The increased availability of MDCT in veterinary practice provides incentive to develop MDCT protocols for liver imaging in small animals. The purpose of this study is to assess the rule of MDCT in the characterization of hepatobiliary diseases in small animals; and to compare this method with conventional US. Candidates for this prospective study were 175 consecutive patients (dogs and cats) referred for evaluation of hepatobiliary disease. The patients underwent liver US and MDCT. Percutaneous needle biopsy was performed on all liver lesions or alterations encountered. As for gallbladder, histopatological evaluation was obtained from cholecystectomy specimens. Ultrasonographic findings in this study agreed well with those of previous reports. A protocol for dual-phase liver MDCT in small animals has been described. MDCT findings in parenchymal disorders of the liver, hepatic neoplasia and biliary disorders are here first described in dogs and cats and compared with the corresponding features in human medicine. The ability of MDCT in detection and characterization of hepatobiliary diseases in small animals is overall superior to conventional US. Ultrasonography and MDCT scanning, however, play complementary rules in the evaluation of these diseases. Many conditions have distinctive imaging features that may permit diagnosis. In most instances biopsy is required for definitive diagnosis.
Resumo:
Toxoplasma gondii is an obligate intracellular parasite capable of infecting virtually all warm-blooded species, including humans, but cats are the only definitive hosts. Humans or animals acquire T. gondii infection by ingesting food or water contaminated with sporulated oocysts or by ingesting tissue cysts containing bradyzoites. Toxoplasmosis has the highest human incidence among zoonotic parasitic diseases, but it is still considered an underreported zoonosis. The importance of T. gondii primary infection in livestock is related to the ability of the parasite to produce tissue cysts in infected animals, which may represent important sources of infection for humans. Consumption of undercooked mutton and pork are considered important sources of human Toxoplasma gondii. The first aim of this thesis was to develop a rapid and sensitive in- house indirect ELISA for the detection of antibodies against T. gondii in sheep sera. ROC-curve analysis showed high discriminatory power (AUC=0.999) and high sensitivity (99.4%) and specificity (99.8%) of the method. The ELISA was used to test a batch of sheep sera (375) collected in the Forli-Cesena district. The overall prevalence was estimated at 41.9% demonstrating that T. gondii infection is widely distributed in sheep reared in Forli-Cesena district. Since the epidemiological impact of waterborne transmission route of T.gondii to humans is now thought to be more significant than previously believed, the second aim of the thesis was to evaluate PCR based methods for detecting T. gondii DNA in raw and finished drinking water samples collected in Scotland. Samples were tested using a quantitative PCR on 529 bp repetitive elements. Only one raw water sample (0.3%), out of the 358 examined, tested T. gondii positive demonstrating that there is no evidence that tap water is a source of Toxoplasma infection in Scotland.
Resumo:
Derivation of stem cell lines from domesticated animals has been of great interest as it benefits translational medicine, clinical applications to improve human and animal health and biotechnology. The main types of stem cells studied are Embryonic Stem Cells (ESCs), induced Pluripotent Stem Cells (iPSCs) and Mesenchymal Stem/Stromal Cells (MSCs). This thesis had two main aims: (I) The isolation of bovine MSCs from amniotic fluid (AF) at different trimesters of pregnancy and their characterization to study pluripotency markers expression. Stemness markers were studied also in MSCs isolated from equine AF, Wharton’s jelly (WJ) and umbilical cord blood (UCB) as continuation of the characterization of these cells previously performed by our research group; (II) The establishment and characterization of iPSCs lines in two attractive large animal models for biomedical and biotechnology research such as the bovine and the swine, and the differentiation into the myogenic lineage of porcine iPSCs. It was observed that foetal tissues in domestic animals such as the bovine and the horse represent a source of MSCs able to differentiate into the mesodermal lineage but they do not proliferate indefinitely and they lack the expression of many pluripotency markers, making them an interesting source of cells for regenerative medicine, but not the best candidate to elucidate pluripotency networks. The protocol used to induce pluripotency in bovine fibroblasts did not work, as well as the chemical induction of pluripotency in porcine fibroblasts, while the reprogramming protocol used for porcine iPSCs was successful and the line generated was amenable to being differentiated into the myogenic lineage, demonstrating that they could be addressed into a desired lineage by genetic modification and appropriated culture conditions. Only a few cell types have been differentiated from domestic animal iPSCs to date, so the development of a reliable directed-differentiation protocol represents a very important result.
Resumo:
Urine is considered an ideal source of biomarkers, however in veterinary medicine a complete study on the urine proteome is still lacking. The present work aimed to apply proteomic techniques to the separation of the urine proteome in dogs, cats, horses, cows and some non-conventional species. High resolution electrophoresis (HRE) was also validated for the quantification of albuminuria in dogs and cats. In healthy cats, applying SDS-PAGE and 2DE coupled to mass spectrometry (MS), was produced a reference map of the urine proteome. Moreover, 13 differentially represented urine proteins were linked with CKD, suggesting uromodulin, cauxin, CFAD, Apo-H, RBP and CYSM as candidate biomarkers to be investigated further. In dogs, applying SDS-PAGE coupled to MS, was highlighted a specific pattern in healthy animals showing important differences in patients affected by leishmaniasis. In particular, uromodulin could be a putative biomarker of tubular damage while arginine esterase and low MW proteins needs to be investigated further. In cows, applying SDS-PAGE, were highlighted different patterns between heifers and cows showing some interesting changes during pregnancy. In particular, putative alpha-fetoprotein and b-PAP needs to be further investigated. In horses, applying SDS-PAGE, was produced a reference profile characterized by 13±4 protein bands and the most represented one was the putative uromodulin. Proteinuric horses showed the decrease of the putative uromodulin band and the appearance of 2 to 4 protein bands at higher MW and a greater variability in the range of MW between 49 and 17 kDa. In felids and giraffes was quantified proteinuria reporting the first data for UTP and UPC. Moreover, by means of SDS-PAGE, were highlighted species-specific electrophoretic patterns in big felids and giraffes.