7 resultados para Precision ranching
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Ren and colleagues (2006) found that saccades to visual targets became less accurate when somatosensory information about hand location was added, suggesting that saccades rely mainly on vision. We conducted two kinematic experiments to examine whether or not reaching movements would also show such strong reliance on vision. In Experiment 1, subjects used their dominant right hand to perform reaches, with or without a delay, to an external visual target or to their own left fingertip positioned either by the experimenter or by the participant. Unlike saccades, reaches became more accurate and precise when proprioceptive information was available. In Experiment 2, subjects reached toward external or bodily targets with differing amounts of visual information. Proprioception improved performance only when vision was limited. Our results indicate that reaching movements, unlike saccades, are improved rather than impaired by the addition of somatosensory information.
Resumo:
Precision horticulture and spatial analysis applied to orchards are a growing and evolving part of precision agriculture technology. The aim of this discipline is to reduce production costs by monitoring and analysing orchard-derived information to improve crop performance in an environmentally sound manner. Georeferencing and geostatistical analysis coupled to point-specific data mining allow to devise and implement management decisions tailored within the single orchard. Potential applications range from the opportunity to verify in real time along the season the effectiveness of cultural practices to achieve the production targets in terms of fruit size, number, yield and, in a near future, fruit quality traits. These data will impact not only the pre-harvest but their effect will extend to the post-harvest sector of the fruit chain. Chapter 1 provides an updated overview on precision horticulture , while in Chapter 2 a preliminary spatial statistic analysis of the variability in apple orchards is provided before and after manual thinning; an interpretation of this variability and how it can be managed to maximize orchard performance is offered. Then in Chapter 3 a stratification of spatial data into management classes to interpret and manage spatial variation on the orchard is undertaken. An inverse model approach is also applied to verify whether the crop production explains environmental variation. In Chapter 4 an integration of the techniques adopted before is presented. A new key for reading the information gathered within the field is offered. The overall goal of this Dissertation was to probe into the feasibility, the desirability and the effectiveness of a precision approach to fruit growing, following the lines of other areas of agriculture that already adopt this management tool. As existing applications of precision horticulture already had shown, crop specificity is an important factor to be accounted for. This work focused on apple because of its importance in the area where the work was carried out, and worldwide.
Resumo:
The aim of this work is to provide a precise and accurate measurement of the 238U(n,gamma) reaction cross-section. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behaviour of the reactor core. In particular, fast neutron reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region inconsistencies between the existing measurements are present up to 15%, and the most recent evaluations disagree each other. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross-section of 238U should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were scheduled within the ANDES project within the 7th Framework Project of the European Commission. The results of one of the 238U(n,gamma) measurement performed at the n_TOF CERN facility are presented in this work, carried out with a detection system constituted of two liquid scintillators. The very accurate cross section from this work is compared with the results obtained from the other measurement performed at the n_TOF facility, which exploit a different and complementary detection technique. The excellent agreement between the two data-sets points out that they can contribute to the reduction of the cross section uncertainty down to the required 1-3%.
Resumo:
The presented study aimed to evaluate the productive and physiological behavior of a 2D multileader apple training systems in the Italian environment both investigating the possibility to increase yield and precision crop load management resolution. Another objective was to find valuable thinning thresholds guaranteeing high yields and matching fruit market requirements. The thesis consists in three studies carried out in a Pink Lady®- Rosy Glow apple orchard trained as a planar multileader training system (double guyot). Fruiting leaders (uprights) dimension, crop load, fruit quality, flower and physiological (leaf gas exchanges and fruit growth rate) data were collected and analysed. The obtained results found that uprights present dependence among each other and as well as a mutual support during fruit development. However, individual upright fruit load and upright’s fruit load distribution on the tree (~ plant crop load) seems to define both upright independence from the other, and single upright crop load effects on the final fruit quality production. Correlations between fruit load and harvest fruit size were found and thanks to that valuable thinning thresholds, based on different vegetative parameters, were obtained. Moreover, it comes out that an upright’s fruit load random distribution presents a widening of those thinning thresholds, keeping un-altered fruit quality. For this reason, uprights resulted a partially physiologically-dependent plant unit. Therefore, if considered and managed as independent, then no major problems on final fruit quality and production occurred. This partly confirmed the possibility to shift crop load management to single upright. The finding of the presented studies together with the benefits coming from multileader planar training systems suggest a high potentiality of the 2D multileader training systems to increase apple production sustainability and profitability for Italian apple orchard, while easing the advent of automation in fruit production.
Resumo:
With the advent of new technologies it is increasingly easier to find data of different nature from even more accurate sensors that measure the most disparate physical quantities and with different methodologies. The collection of data thus becomes progressively important and takes the form of archiving, cataloging and online and offline consultation of information. Over time, the amount of data collected can become so relevant that it contains information that cannot be easily explored manually or with basic statistical techniques. The use of Big Data therefore becomes the object of more advanced investigation techniques, such as Machine Learning and Deep Learning. In this work some applications in the world of precision zootechnics and heat stress accused by dairy cows are described. Experimental Italian and German stables were involved for the training and testing of the Random Forest algorithm, obtaining a prediction of milk production depending on the microclimatic conditions of the previous days with satisfactory accuracy. Furthermore, in order to identify an objective method for identifying production drops, compared to the Wood model, typically used as an analytical model of the lactation curve, a Robust Statistics technique was used. Its application on some sample lactations and the results obtained allow us to be confident about the use of this method in the future.
Resumo:
Agricultural techniques have been improved over the centuries to match with the growing demand of an increase in global population. Farming applications are facing new challenges to satisfy global needs and the recent technology advancements in terms of robotic platforms can be exploited. As the orchard management is one of the most challenging applications because of its tree structure and the required interaction with the environment, it was targeted also by the University of Bologna research group to provide a customized solution addressing new concept for agricultural vehicles. The result of this research has blossomed into a new lightweight tracked vehicle capable of performing autonomous navigation both in the open-filed scenario and while travelling inside orchards for what has been called in-row navigation. The mechanical design concept, together with customized software implementation has been detailed to highlight the strengths of the platform and some further improvements envisioned to improve the overall performances. Static stability testing has proved that the vehicle can withstand steep slopes scenarios. Some improvements have also been investigated to refine the estimation of the slippage that occurs during turning maneuvers and that is typical of skid-steering tracked vehicles. The software architecture has been implemented using the Robot Operating System (ROS) framework, so to exploit community available packages related to common and basic functions, such as sensor interfaces, while allowing dedicated custom implementation of the navigation algorithm developed. Real-world testing inside the university’s experimental orchards have proven the robustness and stability of the solution with more than 800 hours of fieldwork. The vehicle has also enabled a wide range of autonomous tasks such as spraying, mowing, and on-the-field data collection capabilities. The latter can be exploited to automatically estimate relevant orchard properties such as fruit counting and sizing, canopy properties estimation, and autonomous fruit harvesting with post-harvesting estimations.
Resumo:
Protected crop production is a modern and innovative approach to cultivating plants in a controlled environment to optimize growth, yield, and quality. This method involves using structures such as greenhouses or tunnels to create a sheltered environment. These productive solutions are characterized by a careful regulation of variables like temperature, humidity, light, and ventilation, which collectively contribute to creating an optimal microclimate for plant growth. Heating, cooling, and ventilation systems are used to maintain optimal conditions for plant growth, regardless of external weather fluctuations. Protected crop production plays a crucial role in addressing challenges posed by climate variability, population growth, and food security. Similarly, animal husbandry involves providing adequate nutrition, housing, medical care and environmental conditions to ensure animal welfare. Then, sustainability is a critical consideration in all forms of agriculture, including protected crop and animal production. Sustainability in animal production refers to the practice of producing animal products in a way that minimizes negative impacts on the environment, promotes animal welfare, and ensures the long-term viability of the industry. Then, the research activities performed during the PhD can be inserted exactly in the field of Precision Agriculture and Livestock farming. Here the focus is on the computational fluid dynamic (CFD) approach and environmental assessment applied to improve yield, resource efficiency, environmental sustainability, and cost savings. It represents a significant shift from traditional farming methods to a more technology-driven, data-driven, and environmentally conscious approach to crop and animal production. On one side, CFD is powerful and precise techniques of computer modeling and simulation of airflows and thermo-hygrometric parameters, that has been applied to optimize the growth environment of crops and the efficiency of ventilation in pig barns. On the other side, the sustainability aspect has been investigated and researched in terms of Life Cycle Assessment analyses.