6 resultados para Pre-dawn leaf water potencial
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Massive proliferations of cyanobacteria in freshwaters have recently increased, causing ecological and economic losses. Their ever-increasing presence in water sources destined to potabilization has become a major threat for public health, since several species can produce harmful toxins (cyanotoxin). Therefore, additional specific measures to improve management and treatment of drinking water(s) are required. The PhD thesis investigates toxic cyanobacteria in drinking waters with a special focus on Emilia-Romagna (Italy), throughout three separated chapters, each with different specific objectives. The first chapter aims at improving the fast monitoring of cyanobacteria in drinking water, which was investigated by testing different models of multi-wavelength spectrofluorometers. Inter-laboratories calibrations were conducted using mono-specific cultures and field samples, and both the feasibility and the technical limitations of such tools were illustrated. The second chapter evaluates the effectiveness of drinking water treatments in removing cyanobacterial cells and toxins. Two chlorinated oxidants (sodium hypochlorite and chlorine dioxide) already in use for pre-oxidation during water potabilization, were tested on cultures of the toxic cyanobacterium Microcystis aeruginosa posing a specific focus on toxin removal and revealing that pre-oxidation can cause the release of toxins and unknown metabolites. Innovative treatments based on non-thermal plasma were also tested, observing an effective and rapid inactivation of cyanobacterial cells. The third chapter presents a study on a cyanobacterium isolated from a drinking water reservoir of Emilia-Romagna and investigated by combining biological, chemical, and genomic methods. Although the strain did not produce any known cyanotoxin, high toxicity of water-extract was observed in bioassays and potential implications for drinking water were discussed. Overall, the PhD thesis offers new insights into toxic cyanobacteria management in drinking water, highlighting best practices for drinking water managers regarding their detection and removal. Additionally, the thesis provides new contributions to the understanding of the freshwater cyanobacteria community in the Emilia-Romagna region.
Resumo:
Fruit crops are an important resource for food security, since more than being nutrient they are also a source of natural antioxidant compounds, such as polyphenols and vitamins. However, fruit crops are also among the cultivations threatened by the harmful effects of climate change This study had the objective of investigating the physiological effects of deficit irrigation on apple (2020-2021), sour cherry (2020-2021-2022) and apricot (2021-2022) trees, with a special focus on fruit nutraceutical quality. On each trial, the main physiological parameters were monitored along the growing season: i) stem and leaf water potentials; ii) leaf gas exchanges; iii) fruit and shoot growth. At harvest, fruit quality was evaluated especially in terms of fruit size, flesh firmness and soluble solids content. Moreover, it was performed: i) total phenolic content determination; ii) anthocyanidin concentration evaluation; and iii) untargeted metabolomic study. Irrigation scheduling in apricot, apple and sour cherry is surely overestimated by the decision support system available in Emilia-Romagna region. The water stress imposed on different fruit crops, each during two years of study, showed as a general conclusion that the decrease in the irrigation water did not show a straightforward decrease in plant physiological performance. This can be due to the miscalculation of the real water needs of the considered fruit crops. For this reason, there is the need to improve this important tool for an appropriate water irrigation management. Furthermore, there is also the need to study the behaviour of fruit crops under more severe deficit irrigations. In fact, it is likely that the application of lower water amounts will enhance the synthesis of specialized metabolites, with positive repercussion on human health. These hypotheses must be verified.
Resumo:
Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).
Resumo:
Photosynthetic organisms have sought out the delicate balance between efficient light harvesting under limited irradiance and regulated energy dissipation under excess irradiance. One of the protective mechanisms is the thermal energy dissipation through the xanthophyll cycle that may transform harmlessly the excitation energy into heat and thereby prevent the formation of damaging active oxygen species (AOS). Violaxanthin deepoxidase (VDE) converts violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) defending the photosynthetic apparatus from excess of light. Another important biological pathway is the chloroplast water-water cycle, which is referred to the electrons from water generated in PSII reducing atmospheric O2 to water in PSI. This mechanism is active in the scavenging of AOS, when electron transport is slowed down by the over-reduction of NADPH pool. The control of the VDE gene and the variations of a set of physiological parameters, such as chlorophyll florescence and AOS content, have been investigated in response to excess of light and drought condition using Arabidopsis thaliana and Arbutus unedo.. Pigment analysis showed an unambiguous relationship between xanthophyll de-epoxidation state ((A+Z)/(V+A+Z)) and VDE mRNA amount in not-irrigated plants. Unexpectedly, gene expression is higher during the night when xanthophylls are mostly epoxidated and VDE activity is supposed to be very low than during the day. The importance of the water-water cycle in protecting the chloroplasts from light stress has been examined through Arabidopsis plant with a suppressed expression of the key enzyme of the cycle: the thylakoid-attached copper/zinc superoxide dismutase. The analysis revealed changes in transcript expression during leaf development consistent with a signalling role of AOS in plant defence responses but no difference was found any in photosynthesis efficiency or in AOS concentration after short-term exposure to excess of light. Environmental stresses such as drought may render previously optimal light levels excessive. In these circumstances the intrinsic regulations of photosynthetic electron transport like xanthophyll and water-water cycles might modify metabolism and gene expression in order to deal with increasing AOS.
Resumo:
The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.
Resumo:
Government policies play a critical role in influencing market conditions, institutions and overall agricultural productivity. The thesis therefore looks into the history of agriculture development in India. Taking a political economy perspective, the historical account looks at significant institutional and technological innovations carried out in pre- independent and post independent India. It further focuses on the Green Revolution in Asia, as forty years after; the agricultural community still faces the task of addressing recurrent issue of food security amidst emerging challenges, such as climate change. It examines the Green Revolution that took place in India during the late 1960s and 70s in a historical perspective, identifying two factors of institutional change and political leadership. Climate change in agriculture development has become a major concern to farmers, researchers and policy makers alike. However, there is little knowledge on the farmers’ perception to climate change and to the extent they coincide with actual climatic data. Using a qualitative approach,it looks into the perceptions of the farmers in four villages in the states of Maharashtra and Andhra Pradesh. While exploring the adaptation strategies, the chapter looks into the dynamics of who can afford a particular technology and who cannot and what leads to a particular adaptation decision thus determining the adaptive capacity in water management. The final section looks into the devolution of authority for natural resource management to local user groups through the Water Users’ Associations as an important approach to overcome the long-standing challenges of centralized state bureaucracies in India. It addresses the knowledge gap of why some local user groups are able to overcome governance challenges such as elite capture, while others-that work under the design principles developed by Elinor Ostrom. It draws conclusions on how local leadership, can be promoted to facilitate participatory irrigation management.