1 resultado para Powers Definitions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Filtro por publicador
- Repository Napier (4)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Archive of European Integration (24)
- Aston University Research Archive (7)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (55)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (8)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CentAUR: Central Archive University of Reading - UK (17)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (61)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Georgian Library Association, Georgia (1)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (13)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (44)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (14)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (7)
- Publishing Network for Geoscientific & Environmental Data (8)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (25)
- Repositório da Escola Nacional de Administração Pública (ENAP) (4)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (62)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (45)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (4)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (16)
- Universidade dos Açores - Portugal (4)
- Universidade Federal do Pará (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (107)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (213)
- University of Queensland eSpace - Australia (57)
- WestminsterResearch - UK (1)
Resumo:
We analyze the Waring decompositions of the powers of any quadratic form over the field of complex numbers. Our main objective is to provide detailed information about their rank and border rank. These forms are of significant importance because of the classical decomposition expressing the space of polynomials of a fixed degree as a direct sum of the spaces of harmonic polynomials multiplied by a power of the quadratic form. Using the fact that the spaces of harmonic polynomials are irreducible representations of the special orthogonal group over the field of complex numbers, we show that the apolar ideal of the s-th power of a non-degenerate quadratic form in n variables is generated by the set of harmonic polynomials of degree s+1. We also generalize and improve upon some of the results about real decompositions, provided by B. Reznick in his notes from 1992, focusing on possibly minimal decompositions and providing new ones, both real and complex. We investigate the rank of the second power of a non-degenerate quadratic form in n variables, which is equal to (n^2+n+2)/2 in most cases. We also study the border rank of any power of an arbitrary ternary non-degenerate quadratic form, which we determine explicitly using techniques of apolarity and a specific subscheme contained in its apolar ideal. Based on results about smoothability, we prove that the smoothable rank of the s-th power of such form corresponds exactly to its border rank and to the rank of its middle catalecticant matrix, which is equal to (s+1)(s+2)/2.