22 resultados para Power-to-Gas (P2G)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Power-to-Gas storage systems have the potential to address grid-stability issues that arise when an increasing share of power is generated from sources that have a highly variable output. Although the proof-of-concept of these has been promising, the behaviour of the processes in off-design conditions is not easily predictable. The primary aim of this PhD project was to evaluate the performance of an original Power-to-Gas system, made up of innovative components. To achieve this, a numerical model has been developed to simulate the characteristics and the behaviour of the several components when the whole system is coupled with a renewable source. The developed model has been applied to a large variety of scenarios, evaluating the performance of the considered process and exploiting a limited amount of experimental data. The model has been then used to compare different Power-to-Gas concepts, in a real scenario of functioning. Several goals have been achieved. In the concept phase, the possibility to thermally integrate the high temperature components has been demonstrated. Then, the parameters that affect the energy performance of a Power-to-Gas system coupled with a renewable source have been identified, providing general recommendations on the design of hybrid systems; these parameters are: 1) the ratio between the storage system size and the renewable generator size; 2) the type of coupled renewable source; 3) the related production profile. Finally, from the results of the comparative analysis, it is highlighted that configurations with a highly oversized renewable source with respect to the storage system show the maximum achievable profit.
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
In this study, a novel hybrid thermochemical-biological refinery integrated with power-to-x approach was developed for obtaining biopolymers (namely polyhydroxyalkanoates, PHA). Within this concept, a trilogy process schema comprising of, (i) thermochemical conversion via integrated pyrolysis-gasification technologies, (ii) anaerobic fermentation of the bioavailable products obtained through either thermochemistry or water-electrolysis for volatile fatty acids (VFA) production, (iii) and VFA-to-PHA bioconversion via an original microaerophilic-aerobic process was developed. During the first stage of proposed biorefinery where lignocellulosic (wooden) biomass was converted into, theoretically fermentable products (i.e. bioavailables) which were defined as syngas and water-soluble fraction of pyrolytic liquid (WS); biochar as a biocatalyst material; and a dense-oil as a liquid fuel. Within integrated pyrolysis - gasification process, biomass was efficiently converted into fermentable intermediates representing up to 66% of biomass chemical energy content in chemical oxygen demand (COD) basis. In the secondary stage, namely anaerobic fermentation for obtaining VFA rich streams, three different downstream process were investigated. First fermentation test was acidogenic bioconversion of WS materials obtained through pyrolysis of biomass within an original biochar-packed bioreactor, it was sustained up to 0.6 gCOD/L-day volumetric productivity (VP). Second, C1 rich syngas materials as the gaseous fraction of pyrolysis-gasification stage, was fermented within a novel char-based biofilm sparger reactor (CBSR), where up to 9.8 gCOD/L-day VP was detected. Third was homoacetogenic bioconversion within the innovative power-to-x pathway for obtaining commodities via renewable energy sources. More specifically, water-electrolysis derived H2 and CO2 as a primary greenhouse gas was successfully bio-utilized by anaerobic mixed cultures into VFA within CBSR system (VP: 18.2 gCOD/L-day). In the last stage of the developed biorefinery schema, VFA is converted into biopolymers within a new continuous microaerophilic-aerobic microplant, where up to 60% of PHA containing sludges was obtained.
Resumo:
The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.
Resumo:
The aim of this thesis is to develop a depth analysis of the inductive power transfer (or wireless power transfer, WPT) along a metamaterial composed of cells arranged in a planar configuration, in order to deliver power to a receiver sliding on them. In this way, the problem of the efficiency strongly affected by the weak coupling between emitter and receiver can be obviated, and the distance of transmission can significantly be increased. This study is made using a circuital approach and the magnetoinductive wave (MIW) theory, in order to simply explain the behavior of the transmission coefficient and efficiency from the circuital and experimental point of view. Moreover, flat spiral resonators are used as metamaterial cells, particularly indicated in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz). Finally, this thesis presents a complete electrical characterization of multilayer and multiturn flat spiral resonators and, in particular, it proposes a new approach for the resistance calculation through finite element simulations, in order to consider all the high frequency parasitic effects. Multilayer and multiturn flat spiral resonators are studied in order to decrease the operating frequency down to kHz, maintaining small external dimensions and allowing the metamaterials to be supplied by electronic power converters (resonant inverters).
Resumo:
An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.
Resumo:
At the center of galaxy clusters, a dramatic interplay known as feedback cycle occurs between the hot intracluster medium (ICM) and the active galactic nucleus (AGN) of the central galaxy. The footprints of this interplay are evident from X-ray observations of the ICM, where X-ray cavities and shock fronts are associated with radio lobe emission tracing energetic AGN outbursts. While such jet activity reduces the efficiency of the hot gas to cool to lower temperatures, residual cooling can generate warm and cold gas clouds around the central galaxy. The condensed gas parcels can ultimately reach the core of the galaxy and be accreted by the AGN. This picture is the result of tremendous advances over the last three decades. Yet, a deeper understanding of the details of how the heating–cooling regulation is achieved and maintained is still missing. In this Thesis, we delve into key aspects of the feedback cycle. To this end, we leverage high-resolution (sub-arcsecond), multifrequency observations (mainly X-ray and radio) of several top-level facilities (e.g., Chandra, JVLA, VLBA, LOFAR). First, we investigate which conditions trigger a feedback response to gas cooling, by studying the properties of clusters where feedback is just about to start. Then, we focus on the details of how the AGN–ICM interaction progresses by examining cavity and shock heating in the cluster RBS797, an exemplary case of the jet feedback paradigm. Furthermore, we explore the importance of shock heating and the coupling of distinct jet power regimes (i.e., FRII, FRI and FR0 radio galaxies) to the environment. Ultimately, as heating models rely on the connection between the direct evidence (the jets) and the smoking gun (the X-ray cavities) of feedback, we examine the cases in which these two are dramatically misaligned.
Resumo:
Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.
Resumo:
This doctoral dissertation faces the debated topic of the traditions of Republicanism in the Modern Age assuming, as a point of view, the problem of the "mixed" government. The research therefore dwells upon the use of this model in Sixteenth-Century Italy, also in connection with the historical events of two standard Republics such as Florence and Venice. The work focuses on Donato Giannotti (1492-1573), Gasparo Contarini (1483-1542) and Paolo Paruta (1540-1598), as the main figures in order to reconstruct the debate on "mixed" constitution: in them, decisive in the attention paid to the peculiar structure of the Venetian Republic, the only of a certain dimension and power to survive after 1530. The research takes into account also the writings of Traiano Boccalini (1556-1613): he himself, though being involved in the same topics of debate, sets for some aspects his considerations in the framework of a new theme, that of Reason of State.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Al principio iura novit curia si assegnano tradizionalmente due significati: il giudice conosce le norme, quindi le parti non hanno onori al riguardo, e il giudice non è vincolato dalle indicazioni delle parti, quanto alle norme di diritto da applicare. La tesi delimita inizialmente la nozione di questione di diritto, quindi affronta partitamente due problemi che si pongono con riferimento alle questioni di diritto e che sono soliti essere risolti con il richiamo al principio iura novit curia: la conoscenza delle norme da una parte e la qualificazione giuridica della domanda e quindi della situazione soggettiva dall’altra. Quanto alla conoscenza delle norme, motivata la scelta per l’obbligatorietà della conoscenza ufficiosa di tutte le fonti di diritto, la tesi verifica la regola in relazione alle diverse fonti descrivendone la disciplina. Quanto alla qualificazione giuridica della domanda, la tesi, verificata la vigenza del principio iura novit curia, descrive sul piano processuale le relazioni del potere-dovere di qualificazione giuridica a) individuandone i limiti oggettivi, ricompresi nei limiti della domanda, e risultanti dal confronto con la regola della corrispondenza del chiesto con il pronunciato, del concorso di diritti, della natura autodeterminata dei diritti, b) tracciandone le modalità legittime di esercizio in conformità al principio del contradditorio; c) verificandone i limiti esterni, ravvisati in quegli istituti che impediscono al giudice di formulare un giudizio sulla questione di diritto: le sentenze non definitive su questioni di diritto, il principio di diritto, il giudicato interno e i limiti alla cognizione del giudice dell’impugnazione tra i gradi di giudizio.
Resumo:
Il coordinamento tra sistemi impositivi è una questione originaria e tipica del diritto comunitario. La tesi ne esplora le conseguenze sotto più aspetti.
Resumo:
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.
Resumo:
Desde tiempos inmemoriales, la presencia de sujetos encargados de la administración del patrimonio del concursado ha sido consustancial a la existencia de procesos en los que se declaraba la insolvencia del deudor. Tradicionalmente, estos sujetos ostentaban un papel de singular alcance para el correcto desarrollo del concurso. En la actualidad se erigen en el motor del concurso. El vasto cometido atribuido a la administración concursal nos obliga a restringir nuestra investigación. En particular, centraremos nuestra atención en la posición jurídico procesal de la administración concursal en aquellas actuaciones que desarrolla ésta a la hora de determinar el patrimonio concursal. Para ello, partiendo de las líneas generales que a través de la historia han definido a los órganos de administración concursal, analizaremos el régimen jurídico de la actual administración concursal en España. A continuación, estudiaremos la naturaleza jurídica de la limitación a las facultades patrimoniales que sufre el deudor con la declaración de concurso y el reconocimiento que, como parte procesal, le atribuye la Ley de Enjuiciamiento Civil al patrimonio concursal. Todo ello, nos permitirá pronunciarnos sobre la referida posición de la administración concursal, como parte o como representante. Tras lo descrito, nos ocuparemos de determinar la posición que ocupa la administración concursal en aquellos procesos que ya estuvieran pendientes en el momento de la declaración de concurso y aquellos otros procesos nuevos que inicia aquella por su propia iniciativa. Por último, analizaremos la descrita posición procesal en el ejercicio de acciones de reintegración y demás de impugnación así como en aquellos supuestos en los que se impugna el inventario o la lista de acreedores.
Resumo:
Il lavoro di ricerca che si presenta è suddiviso in tre capitoli nei quali, da altrettanti punti di osservazione, è analizzato il tema della instabilità del lavoro. Nel primo capitolo, il candidato evidenzia le cause che hanno determinato il vorticoso aumento di utilizzo dei contratti di lavoro flessibili e, a tal proposito, da un prospettiva extra-nazionale, analizza le direttive europee e, i principi comuni e le guidelines che, nel percorso di sviluppo della strategia europea per l’occupazione, hanno posto la flexicurity come modello di mercato europeo tipico; dalla medesima prospettiva, prendendo spunto dai cambiamenti del mercato globale, si pone attenzione all’analisi economica del diritto del lavoro e, in particolare, alle conseguenze che le trasformazioni economiche generano sulla capacità di questa materia di tenere elevato il grado di sicurezza occupazionale connesso alla stipula dei contratti di lavoro. Il secondo capitolo è dedicato al ruolo svolto in Italia dai sindacati sul tema della flessibilità. In tal senso, l’autore evidenzia come la funzione “istituzionale” cui sono chiamate anche le organizzazioni dei lavoratori abbia caratterizzato le scelte di politica sindacale in materia di lavori temporanei; è così preso in esame il concetto di flessibilità “contrattata”, come già emerso in dottrina, e si teorizza la differenza tra rinvii “aperti” e rinvii “chiusi”, quali differenti forme di delega di potere normativo alle parti sociali in materia di flessibilità. Nel terzo ed ultimo capitolo l’autore tenta di evidenziare i vantaggi e le funzioni che derivano dall’utilizzo del contratto a termine, quale principale forma di impiego flessibile del nostro mercato del lavoro. Premessi tali benefici viene formulato un giudizio critico rispetto al grado di liberalizzazione che, con le ultime riforme, è stato ammesso per questo istituto sempre più strumento di arbitrio del datore di lavoro nella scelta della durata e delle condizioni di svolgimento della prestazione di lavoro.