10 resultados para Power resources - Environmental aspects
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This research aims at contributing to a better understanding of changes in local governments’ accounting and reporting practices. Particularly, ‘why’, ‘what’ and ‘how’ environmental aspects are included and the significance of changes across time. It adopts an interpretative approach to conduct a longitudinal analysis of case studies. Pettigrew and Whipp’s framework on context, content and process is used as a lens to distinguish changes under each dimension and analyse their interconnections. Data is collected from official documents and triangulated with semi-structured interviews. The legal framework defines as boundaries of the accounting information the territory under local governments’ jurisdiction and their immediate surrounding area. Organisational environmental performance and externalities are excluded from the requirements. An interplay between the local outer context, political commitment and organisational culture justifies the implementation of changes beyond what is regulated and the implementation of transformational changes. Local governments engage in international networks to gain access to funding and implement changes, leading to adopting the dominant environmental agenda. Key stakeholders, like citizens, are not engaged in the accounting and reporting process. Thus, there is no evidence that the environmental aspects addressed and related changes align with stakeholders’ needs and expectations, which jeopardises its significance. Findings from the current research have implications in other EU member states due to the harmonisation of accounting and reporting practices and the common practice across the EU in using external funding to conceptualise and implement changes. This implies that other local governments could also be representing a limited account related to environmental aspects.
Resumo:
Environmental Management includes many components, among which we can include Environmental Management Systems (EMS), Environmental Reporting and Analysis, Environmental Information Systems and Environmental Communication. In this work two applications are presented: the developement and implementation of an Environmental Management System in local administrations, according to the European scheme "EMAS", and the analysis of a territorial energy system through scenario building and environmental sustainability assessment. Both applications are linked by the same objective, which is the quest for more scientifically sound elements; in fact, both EMS and energy planning are oftec carachterized by localism and poor comparability. Emergy synthesis, proposed by ecologist H.T. Odum and described in his book "Environmental Accounting: Emergy and Environmental Decision Making" (1996) has been chosen and applied as an environmental evaluation tool, in order complete the analysis with an assessment of the "global value" of goods and processes. In particular, eMergy syntesis has been applied in order to improve the evaluation of the significance of environmental aspects in an EMS, and in order to evaluate the environmental performance of three scenarios of future evolution of the energy system. Regarding EMS, in this work an application of an EMS together with the CLEAR methodology for environmental accounting is discussed, in order to improve the identification of the environmental aspects; data regarding environmental aspects and significant ones for 4 local authorities are also presented, together with a preliminary proposal for the integration of the assessment of the significance of environmental aspects with eMergy synthesis. Regarding the analysis of an energy system, in this work the carachterization of the current situation is presented together with the overall energy balance and the evaluation of the emissions of greenhouse gases; moreover, three scenarios of future evolution are described and discussed. The scenarios have been realized with the support of the LEAP software ("Long Term Energy Alternatives Planning System" by SEI - "Stockholm Environment Institute"). Finally, the eMergy synthesis of the current situation and of the three scenarios is shown.
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
Beamforming entails joint processing of multiple signals received or transmitted by an array of antennas. This thesis addresses the implementation of beamforming in two distinct systems, namely a distributed network of independent sensors, and a broad-band multi-beam satellite network. With the rising popularity of wireless sensors, scientists are taking advantage of the flexibility of these devices, which come with very low implementation costs. Simplicity, however, is intertwined with scarce power resources, which must be carefully rationed to ensure successful measurement campaigns throughout the whole duration of the application. In this scenario, distributed beamforming is a cooperative communication technique, which allows nodes in the network to emulate a virtual antenna array seeking power gains in the order of the size of the network itself, when required to deliver a common message signal to the receiver. To achieve a desired beamforming configuration, however, all nodes in the network must agree upon the same phase reference, which is challenging in a distributed set-up where all devices are independent. The first part of this thesis presents new algorithms for phase alignment, which prove to be more energy efficient than existing solutions. With the ever-growing demand for broad-band connectivity, satellite systems have the great potential to guarantee service where terrestrial systems can not penetrate. In order to satisfy the constantly increasing demand for throughput, satellites are equipped with multi-fed reflector antennas to resolve spatially separated signals. However, incrementing the number of feeds on the payload corresponds to burdening the link between the satellite and the gateway with an extensive amount of signaling, and to possibly calling for much more expensive multiple-gateway infrastructures. This thesis focuses on an on-board non-adaptive signal processing scheme denoted as Coarse Beamforming, whose objective is to reduce the communication load on the link between the ground station and space segment.
Resumo:
The growing market of electrical cars, portable electronics, photovoltaic systems..etc. requires the development of efficient, low-cost, and low environmental impact energy storage devices (ESDs) including batteries and supercapacitors.. Due to their extended charge-discharge cycle, high specific capacitance, and power capabilities supercapacitors are considered among the most attractive ESDs. Over the last decade, research and development in supercapacitor technology have accelerated: thousands of articles have been published in the literature describing the electrochemical properties of the electrode materials and electrolyte in addition to separators and current collectors. Carbon-based supercapacitor electrodes materials have gained increasing attention due to their high specific surface area, good electrical conductivity, and excellent stability in harsh environments, as well as other characteristics. Recently, there has been a surge of interest in activated carbon derived from low-cost abundant sources such as biomass for supercapacitor electrode materials. Also, particular attention was given to a major challenging issue concerning the substitution of organic solutions currently used as electrolytes due to their highest electrochemical stability window even though their high cost, toxicity, and flammability. In this regard, the main objective of this thesis is to investigate the performances of supercapacitors using low cost abundant safe, and low environmental impact materials for electrodes and electrolytes. Several prototypes were constructed and tested using natural resources through optimization of the preparation of appropriate carbon electrodes using agriculture by-products waste or coal (i.e. Argan shell or Anthracite from Jerrada). Such electrodes were tested using several electrolyte formulations (aqueous and water in salt electrolytes) beneficing their non-flammability, lower cost, and environmental impact; the characteristics that provide a promising opportunity to design safer, inexpensive, and environmentally friendly devices compared to organic electrolytes.
Resumo:
The present Thesis studies three alternative solvent groups as sustainable replacement of traditional organic solvents. Some aspects of fluorinated solvents, supercritical fluids and ionic liquids, have been analysed with a critical approach and their effective “greenness” has been evaluated from the points of view of the synthesis, the properties and the applications. In particular, the attention has been put on the environmental and human health issues, evaluating the eco-toxicity, the toxicity and the persistence, to underline that applicability and sustainability are subjects with equal importance. The “green” features of fluorous solvents and supercritical fluids are almost well-established; in particular supercritical carbon dioxide (scCO2) is probably the “greenest” solvent among the alternative solvent systems developed in the last years, enabling to combine numerous advantages both from the point of view of industrial/technological applications and eco-compatibility. In the Thesis the analysis of these two classes of alternative solvents has been mainly focused on their applicability, rather than the evaluation of their environmental impact. Specifically they have been evaluated as alternative media for non-aqueous biocatalysis. For this purpose, the hydrophobic ion pairing (HIP), which allows solubilising enzymes in apolar solvents by an ion pairing between the protein and a surfactant, has been investigated as effective enzymatic derivatisation technique to improve the catalytic activity under homogeneous conditions in non conventional media. The results showed that the complex enzyme-surfactant was much more active both in fluorous solvents and in supercritical carbon dioxide than the native form of the enzyme. Ionic liquids, especially imidazolium salts, have been proposed some years ago as “fully green” alternative solvents; however this epithet does not take into account several “brown” aspects such as their synthesis from petro-chemical starting materials, their considerable eco-toxicity, toxicity and resistance to biodegradation, and the difficulty of clearly outline applications in which ionic liquids are really more advantageous than traditional solvents. For all of these reasons in this Thesis a critical analysis of ionic liquids has been focused on three main topics: i) alternative synthesis by introducing structural moieties which could reduce the toxicity of the most known liquid salts, and by using starting materials from renewable resources; ii) on the evaluation of their environmental impact through eco-toxicological tests (Daphnia magna and Vibrio fischeri acute toxicity tests, and algal growth inhibition), toxicity tests (MTT test, AChE inhibition and LDH release tests) and fate and rate of aerobic biodegradation in soil and water; iii) and on the demonstration of their effectiveness as reaction media in organo-catalysis and as extractive solvents in the recovery of vegetable oil from terrestrial and aquatic biomass. The results about eco-toxicity tests with Daphnia magna, Vibrio fischeri and algae, and toxicity assay using cultured cell lines, clearly indicate that the difference in toxicity between alkyl and oxygenated cations relies in differences of polarity, according to the general trend of decreasing toxicity by decreasing the lipophilicity. Independently by the biological approach in fact, all the results are in agreement, showing a lower toxicity for compounds with oxygenated lateral chains than for those having purely alkyl lateral chains. These findings indicate that an appropriate choice of cation and anion structures is important not only to design the IL with improved and suitable chemico-physical properties but also to obtain safer and eco-friendly ILs. Moreover there is a clear indication that the composition of the abiotic environment has to be taken into account when the toxicity of ILs in various biological test systems is analysed, because, for example, the data reported in the Thesis indicate a significant influence of salinity variations on algal toxicity. Aerobic biodegradation of four imidazolium ionic liquids, two alkylated and two oxygenated, in soil was evaluated for the first time. Alkyl ionic liquids were shown to be biodegradable over the 6 months test period, and in contrast no significant mineralisation was observed with oxygenated derivatives. A different result was observed in the aerobic biodegradation of alkylated and oxygenated pyridinium ionic liquids in water because all the ionic liquids were almost completely degraded after 10 days, independently by the number of oxygen in the lateral chain of the cation. The synthesis of new ionic liquids by using renewable feedstock as starting materials, has been developed through the synthesis of furan-based ion pairs from furfural. The new ammonium salts were synthesised in very good yields, good purity of the products and wide versatility, combining low melting points with high decomposition temperatures and reduced viscosities. Regarding the possible applications as surfactants and biocides, furan-based salts could be a valuable alternative to benzyltributylammonium salts and benzalkonium chloride that are produced from non-renewable resources. A new procedure for the allylation of ketones and aldehydes with tetraallyltin in ionic liquids was developed. The reaction afforded high yields both in sulfonate-containing ILs and in ILs without sulfonate upon addition of a small amount of sulfonic acid. The checked reaction resulted in peculiar chemoselectivity favouring aliphatic substrates towards aromatic ketones and good stereoselectivity in the allylation of levoglucosenone. Finally ILs-based systems could be easily and successfully recycled, making the described procedure environmentally benign. The potential role of switchable polarity solvents as a green technology for the extraction of vegetable oil from terrestrial and aquatic biomass has been investigated. The extraction efficiency of terrestrial biomass rich in triacylglycerols, as soy bean flakes and sunflower seeds, was comparable to those of traditional organic solvents, being the yield of vegetable oils recovery very similar. Switchable polarity solvents as been also exploited for the first time in the extraction of hydrocarbons from the microalga Botryococcus braunii, demonstrating the efficiency of the process for the extraction of both dried microalgal biomass and directly of the aqueous growth medium. The switchable polarity solvents exhibited better extraction efficiency than conventional solvents, both with dried and liquid samples. This is an important issue considering that the harvest and the dewatering of algal biomass have a large impact on overall costs and energy balance.
Resumo:
The thesis aims at analysing the role of collective action as a viable alternative to the traditional forms of intervention in agriculture in order to encourage the provision of agri-environmental public goods. Which are the main benefits of collective action, in terms of effectiveness and efficiency, compared to traditional market or public intervention policies? What are the drivers that encourage farmers to participate into collective action? To what extent it is possible to incorporate collective aspects into policies aimed at providing agri-environmental public goods? With the objective of addressing these research questions, the thesis is articulated in two levels: a theoretical analysis on the role of collective action in the provision of public goods and a specific investigation of two local initiative,s were an approach collective management of agro-environmental resources was successfully implemented. The first case study concerns a project named “Custodians of the Territory”, developed by the local agency in Tuscany “Comunità Montana Media Valle del Serchio”, which settled for an agreement with local farmers for a collective provision of environmental services related to the hydro-geological management of the district. The second case study is related to the territorial agri-environmental agreement experimented in Valdaso (Marche), where local farmers have adopted integrated pest management practices collectively with the aim of reducing the environmental impact of their farming practices. The analysis of these initiatives, carried out through participatory methods (Rapid Rural Appraisal), allowed developing a theoretical discussion on the role of innovative tools (such as co-production and co-management) in the provision of agri-environmental public goods. The case studies also provided some recommendations on the government intervention and policies needed to promote successful collective action for the provision of agri-environmental public goods.
Resumo:
Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.
Resumo:
An appropriate management of fisheries resources can only be achieved with the continuous supply of information on the structure and biology of populations, in order to predict the temporal fluctuations. This study supports the importance of investigating the bio-ecology of increasingly exploited and poorly known species, such as gurnards (Osteichthyes, Triglidae) from Adriatic Sea (Mediterranean), to quantify their ecological role into marine community. It also focuses on investigate inter and intra-specific structuring factor of Adriatic population. These objectives were achieved by: 1) investigating aspects of the population dynamics; 2) studying the feeding biology through the examination of stomach contents; 3) using sagittal otoliths as potential marker of species life cycle; 4) getting preliminary data on mDNA phylogeny. Gurnards showed a specie-specific “critical size” coinciding with the start of sexual maturity, the tendency to migrate to greater depths, a change of diet from crustaceans to fish and an increase of variety of food items eaten. Distribution of prey items, predator size range and depth distribution were the main dimensions that influence the breadth of trophic niche and the relative difference amongst Adriatic gurnards. Several feeding preferences were individuated and a possible impact among bigger-size gurnards and other commercial fishes (anchovy, gadoids) and Crustacea (such as mantis prawn and shrimps) were to be necessary considered. Otolith studies showed that gurnard species have a very fast growth despite other results in other areas; intra-specific differences and the increase in the variability of otolith shape, sulcus acusticus shape, S:O ratios, sulcus acusticus external crystals arrangement were shown between juveniles and adults and were linked to growth (individual genetic factors) and to environmental conditions (e.g. depth and trophic niche distribution). In order to facilitate correct biological interpretation of data, molecular data were obtained for comparing morphological distance to genetic ones.
Resumo:
The continuous growth of global population brings an exponential increase on energy consumption and greenhouse gas emission in the atmosphere contributing to the increase of the planet temperature. Therefore, it is mandatory to adopt renewable energy production systems like photovoltaic or wind power: unfortunately, the main limit of these technologies is the natural intermittence of the energy sources that limits their applicability. The key enabling technology for a widespread usage of clean power sources are electrochemical energy storage systems, most commonly known as batteries. Batteries will enable the storage of energy during overproduction period and the release during low production period stabilizing the power outcome, allowing the connection to the main grid and increasing the applicability of renewable energy sources. Despite the high number of benefits that the widespread use of batteries will bring, starting from the reduction of CO2 emitted in the atmosphere, it is necessary also to take care of the environmental impact of processes and materials used for the production of electrochemical storage systems. In addition, there are many different battery systems, with different chemistries and designs that require specific strategies. Nowadays, the most part of the materials and chemicals used for battery production are toxic for humans and the environment. For this reason, this Ph.D. thesis addresses the challenging scope of lowering the environmental impact of manufacturing processes of different electrochemical energy storage systems using natural derived or low carbon footprint materials while increasing the performances with respect to commercial devices. The activities carried out during my Ph.D. cover a high number of different electrochemical storage systems involving a wide range of electrochemical processes from capacitive to faradic. New materials, different production processes and new battery design, all in view of sustainability and low environmental impact, increased the innovative and challenging aspects of this work.