11 resultados para Power flow algorithm
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.
Resumo:
In this dissertation some novel indices for vulnerability and robustness assessment of power grids are presented. Such indices are mainly defined from the structure of transmission power grids, and with the aim of Blackout (BO) prevention and mitigation. Numerical experiments showing how they could be used alone or in coordination with pre-existing ones to reduce the effects of BOs are discussed. These indices are introduced inside 3 different sujects: The first subject is for taking a look into economical aspects of grids’ operation and their effects in BO propagation. Basically, simulations support that: the determination to operate the grid in the most profitable way could produce an increase in the size or frequency of BOs. Conversely, some uneconomical ways of supplying energy are shown to be less affected by BO phenomena. In the second subject new topological indices are devised to address the question of "which are the best buses to place distributed generation?". The combined use of two indices, is shown as a promising alternative for extracting grid’s significant features regarding robustness against BOs and distributed generation. For this purpose, a new index based on outage shift factors is used along with a previously defined electric centrality index. The third subject is on Static Robustness Analysis of electric networks, from a purely structural point of view. A pair of existing topological indices, (namely degree index and clustering coefficient), are combined to show how degradation of the network structure can be accelerated. Blackout simulations were carried out using the DC Power Flow Method and models of transmission networks from the USA and Europe.
Resumo:
The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.
Resumo:
This doctoral dissertation aims to establish fiber-optic technologies overcoming the limiting issues of data communications in indoor environments. Specific applications are broadband mobile distribution in different in-building scenarios and high-speed digital transmission over short-range wired optical systems. Two key enabling technologies are considered: Radio over Fiber (RoF) techniques over standard silica fibers for distributed antenna systems (DAS) and plastic optical fibers (POFs) for short-range communications. Hence, the objectives and achievements of this thesis are related to the application of RoF and POF technologies in different in-building scenarios. On one hand, a theoretical and experimental analysis combined with demonstration activities has been performed on cost-effective RoF systems. An extensive modeling on modal noise impact both on linear and non-linear characteristics of RoF link over silica multimode fiber has been performed to achieve link design rules for an optimum choice of the transmitter, receiver and launching technique. A successful transmission of Long Term Evolution (LTE) mobile signals on the resulting optimized RoF system over silica multimode fiber employing a Fabry-Perot LD, central launch technique and a photodiode with a built-in ball lens was demonstrated up to 525m with performances well compliant with standard requirements. On the other hand, digital signal processing techniques to overcome the bandwidth limitation of POF have been investigated. An uncoded net bit-rate of 5.15Gbit/s was obtained on a 50m long POF link employing an eye-safe transmitter, a silicon photodiode, and DMT modulation with bit and power loading algorithm. With the insertion of 3x2N quadrature amplitude modulation constellation formats, an uncoded net-bit-rate of 5.4Gbit/s was obtained on a 50 m long POF link employing an eye-safe transmitter and a silicon avalanche photodiode. Moreover, simultaneous transmission of baseband 2Gbit/s with DMT and 200Mbit/s with an ultra-wideband radio signal has been validated over a 50m long POF link.
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
An extensive sample (2%) of private vehicles in Italy are equipped with a GPS device that periodically measures their position and dynamical state for insurance purposes. Having access to this type of data allows to develop theoretical and practical applications of great interest: the real-time reconstruction of traffic state in a certain region, the development of accurate models of vehicle dynamics, the study of the cognitive dynamics of drivers. In order for these applications to be possible, we first need to develop the ability to reconstruct the paths taken by vehicles on the road network from the raw GPS data. In fact, these data are affected by positioning errors and they are often very distanced from each other (~2 Km). For these reasons, the task of path identification is not straightforward. This thesis describes the approach we followed to reliably identify vehicle paths from this kind of low-sampling data. The problem of matching data with roads is solved with a bayesian approach of maximum likelihood. While the identification of the path taken between two consecutive GPS measures is performed with a specifically developed optimal routing algorithm, based on A* algorithm. The procedure was applied on an off-line urban data sample and proved to be robust and accurate. Future developments will extend the procedure to real-time execution and nation-wide coverage.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
Wireless Sensor Networks (WSNs) offer a new solution for distributed monitoring, processing and communication. First of all, the stringent energy constraints to which sensing nodes are typically subjected. WSNs are often battery powered and placed where it is not possible to recharge or replace batteries. Energy can be harvested from the external environment but it is a limited resource that must be used efficiently. Energy efficiency is a key requirement for a credible WSNs design. From the power source's perspective, aggressive energy management techniques remain the most effective way to prolong the lifetime of a WSN. A new adaptive algorithm will be presented, which minimizes the consumption of wireless sensor nodes in sleep mode, when the power source has to be regulated using DC-DC converters. Another important aspect addressed is the time synchronisation in WSNs. WSNs are used for real-world applications where physical time plays an important role. An innovative low-overhead synchronisation approach will be presented, based on a Temperature Compensation Algorithm (TCA). The last aspect addressed is related to self-powered WSNs with Energy Harvesting (EH) solutions. Wireless sensor nodes with EH require some form of energy storage, which enables systems to continue operating during periods of insufficient environmental energy. However, the size of the energy storage strongly restricts the use of WSNs with EH in real-world applications. A new approach will be presented, which enables computation to be sustained during intermittent power supply. The discussed approaches will be used for real-world WSN applications. The first presented scenario is related to the experience gathered during an European Project (3ENCULT Project), regarding the design and implementation of an innovative network for monitoring heritage buildings. The second scenario is related to the experience with Telecom Italia, regarding the design of smart energy meters for monitoring the usage of household's appliances.
Resumo:
Atrial fibrillation (AF) is a widespread arrhythmia, associated with higher risk of stroke, sleep disorders and dementia. In some conditions, electrical cardioversion (ECV) represents the best choice for rhythm control. Nowadays, there is a growing interest in developing new devices for screening and monitoring of AF patients. We aimed to improve acute efficacy of ECV procedure and to explore the feasibility of the use of new wearable devices for monitoring in candidates to AF ECV. We compared antero-apical pads vs antero-posterior patches approach for AF ECV, and we elaborated a decision algorithm to improve acute efficacy. After, we evaluated the feasibility of the use of new wearable devices for monitoring of candidates to AF ECV. In particular, we analysed the effect of AF ECV on heart rate variability and vascular age parameters derived from PPG signals registered with Empatica (CE 1876/MDD 93/42/EEC), and on EEG pattern registered with Neurosteer (Israel). From December 2005 to September 2019, 492 patients were enrolled. We evaluated acute efficacy of the two approaches for AF ECV and we elaborated a decision algorithm based on body surface area, weight, and height. The decision algorithm improved first shock efficacy (93.2% vs. 87.2%, p=0.025). From 1st November 2021 to 1st April 2022, 24 patients were enrolled in PPEEG-AF pilot study. Considering vascular age parameters, a significant reduction in TPR and a wave was observed (p<0.001). Considering sleep patterns, a tendency to higher coherence was observed in registrations acquired during AF, or considering signals registered for each patient independently from AF. The new decision algorithm improved acute efficacy and reduced costs associated with adhesive patches. Significant modifications were observed on vascular age parameters measured before and after ECV, and a possible AF effect on sleep pattern was noticed. More data are necessary to confirm these preliminary results.