3 resultados para Powdery mildew
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In 2010, 2011 and 2012 growing seasons, the occurrence of the ascomycetes Podosphaera fusca and Golovinomyces orontii, causal agents of powdery mildew disease, was monitored on cultivated cucurbits located in Bologna and Mantua provinces to determine the epidemiology of the species. To identify the pathogens, both morphological and molecular identifications were performed on infected leaf samples and a Multiplex-PCR was performed to identify the mating type genes of P. fusca isolates. The investigations indicated a temporal succession of the two species with the earlier infections caused by G. orontii, that seems to be the predominant species till the middle of July when it progressively disappears and P. fusca becomes the main species infecting cucurbits till the end of October. The temporal variation is likely due to the different overwintering strategies of the two species instead of climatic conditions. Only chasmothecia of P. fusca were recorded and mating type alleles ratio tended to be 1:1. Considering that only chasmothecia of P. fusca were found, molecular-genetic analysis were carried out to find some evidence of recombination within this species by MLST and AFLP methods. Surprisingly, no variations were observed within isolates for the 8 MLST markers used. According to this result, AFLP analysis showed a high similarity within isolates, with SM similarity coefficient ranging between 0.91-1.00 and also, sequencing of 12 polymorphic bands revealed identity to some gene involved in mutation and selection. The results suggest that populations of P. fusca are likely to be a clonal population with some differences among isolates probably due to agricultural practices such as fungicides treatments and cultivated hosts. Therefore, asexual reproduction, producing a lot of fungal biomass that can be easily transported by wind, is the most common and useful way to the spread and colonization of the pathogen.
Resumo:
The objective was to analyse population structure and to determine genetic diversity of Erysiphe necator (syn. Uncinula necator) populations obtained from some vineyards located in the South-East Po valley (Italy). Powdery mildew is one of the most important fungal diseases of grapes (Vitis vinifera L.) throughout the world. The causal agent is the haploid, heterothallic ascomycete E. necator. It is an obligate biotrophic fungus and it can be found only on green organs of plants belonging to the family Vitaceae. For this pathogen, two sympatric populations (groups A and B) have been described in Europe and Australia. The two genetic groups differ at multiple genetic loci and previous studies reported a lack of interfertility among isolates of the two groups. There are now several well documented examples of plant pathogen species, such as Leptosphaeria maculans, Gaeumannomyces graminis var. tritici, Botrytis cinerea and Erysiphe syringae, which are indeed composed of genetically differentiated clades, that have led to the description of new groups or even new species. Several studies have suggested that genetic E. necator group A and B correlated with ecological features of the pathogen; some researchers proposed that group A isolates over-winter as resting mycelium within dormant buds, and in spring originate infected shoots, known as Flag shoots, while group B isolates would survive as ascospores in overwintering cleistothecia. However, the association between genetic groups and mode of over-wintering has been challenged by recent studies reporting that flag-shoot may be originated indifferently by group A or group B isolate. Previous studies observed a strong association between the levels of disease severity at the end of the growing season and the initial compositions of E. necator populations in commercial vineyards. The frequencies of E. necator genetic groups vary considerably among vineyards, and the two groups may coexist in the same vineyard. This finding suggests that we need more information on the genetics and epidemiology of E. necator for optimize the crop management In this study we monitored E. necator populations in different vineyards in Emilia – Romagna region (Italy), where the pathogen overwinters both as flagshoots and as cleistothecia. During the grape growing season, symptomatic leaves were sampled early in the growing season and both leaves and berries later during the epidemic growth of the disease. From each sample, single-conidial isolate was obtained. Each isolates was grown on V. vinifera leaf cv. Primitivo and after harvesting the mycelium, the DNA was purified and used as template for PCR amplification with SCAR primers (Sequences Characterised Amplified Region ), -tubulin, IGS sequences and Microsatellite markers (SSR). Amplified DNA from b-tubulin and IGS loci was digested with AciI and XhoI restriction enzymes, respectively, to show single-nucleotide polymorphisms specific for the two genetic groups. The results obtained indicated that SCAR primers are not useful to study the epidemiology. of E. necator conversely the b-tubulin IGS sequences and SSR. Summarize the results obtained with b-tubulin, IGS sequences, in treated vineyards we have found individuals of group B along all grape growing season, whereas in the untreated vineyard individuals of the two genetic groups A and B coexisted throughout the season, with no significant change of their frequency. DNA amplified from ascospores of single cleistothecia showed the presence of markers diagnostic for either groups A and B and were seldom observed also the coexistence of both groups within a claistothecium. These results indicate that individuals of the two groups mated in nature and were able to produced ascospores. With SSR we showed the possibility of recombination between A and B groups in field isolates. During winter, cleistothecia were collected repeatedly in the same vineyards sampling leaves fallen on ground, exfoliating bark from trunks, and from soil. From each substrate, was assess the percentage of cleistothecia containing viable ascospores. Our results confirmed that cleisthotecia contained viable ascospores, therefore they have the potential to be an additional and important source of primary inoculum in Emilia-Romagna vineyards.
Resumo:
FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, the preparation requires heating of the PE in order to produces at transparent pellet. This will affect compounds with low melting points, especially those with structurally incorporated water. Another option in FIR transmission is the use of thin films. We test the use of polyethylene thin film (PETF), both commercial and laboratory-made PETF. ATR collection of samples is possible in both the MIR and FIR region on solid, powdery or liquid samples. Changing from the MIR to the FIR region is easy as it simply requires the change of detector and beamsplitter (which can be performed within a few minutes). No preparation of the sample is necessary, which is a huge advantage over the PE transmission method. The most obvious difference, when comparing transmission with ATR, is the distortion of band shape (which appears asymmetrical in the lower wavenumber region) and intensity differences. However, the biggest difference can be the shift of strong absorbing bands moving to lower wavenumbers in ATR mode. The sometimes huge band shift necessitates the collection of standard library spectra in both FIR transmission and ATR modes, provided these two methods of collecting are to be employed for analyses of unknown samples. Standard samples of 150 pigment and corrosion compounds are thus collected in both FIR transmission and ATR mode in order to build up a digital library of spectra for comparison with unknown samples. XRD, XRF and Raman spectroscopy assists us in confirming the purity or impurity of our standard samples. 24 didactic test tables, with known pigment and binder painted on the surface of a limestone tablet, are used for testing the established library and different ways of collecting in ATR and transmission mode. In ATR, micro samples are scratched from the surface and examined in both the MIR and FIR region. Additionally, direct surface contact of the didactic tablets with the ATR crystal are tested together with water enhanced surface contact. In FIR transmission we compare the powder from our test tablet on the laboratory PETF and embedded in PE. We also compare the PE pellets collected using a 4x beam condenser, focusing the IR beam area from 8 mm to 2 mm. A few samples collected from a mural painting in a Nepalese temple, corrosion products collected from archaeological Chinese bronze objects and samples from a mural paintings in an Italian abbey, are examined by ATR or transmission spectroscopy.