8 resultados para Population Growth
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Population growth in urban areas is a world-wide phenomenon. According to a recent United Nations report, over half of the world now lives in cities. Numerous health and environmental issues arise from this unprecedented urbanization. Recent studies have demonstrated the effectiveness of urban green spaces and the role they play in improving both the aesthetics and the quality of life of its residents. In particular, urban green spaces provide ecosystem services such as: urban air quality improvement by removing pollutants that can cause serious health problems, carbon storage, carbon sequestration and climate regulation through shading and evapotranspiration. Furthermore, epidemiological studies with controlled age, sex, marital and socio-economic status, have provided evidence of a positive relationship between green space and the life expectancy of senior citizens. However, there is little information on the role of public green spaces in mid-sized cities in northern Italy. To address this need, a study was conducted to assess the ecosystem services of urban green spaces in the city of Bolzano, South Tyrol, Italy. In particular, we quantified the cooling effect of urban trees and the hourly amount of pollution removed by the urban forest. The information was gathered using field data collected through local hourly air pollution readings, tree inventory and simulation models. During the study we quantified pollution removal for ozone, nitrogen dioxide, carbon monoxide and particulate matter (<10 microns). We estimated the above ground carbon stored and annually sequestered by the urban forest. Results have been compared to transportation CO2 emissions to determine the CO2 offset potential of urban streetscapes. Furthermore, we assessed commonly used methods for estimating carbon stored and sequestered by urban trees in the city of Bolzano. We also quantified ecosystem disservices such as hourly urban forest volatile organic compound emissions.
Resumo:
Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.
Resumo:
It is well known that many realistic mathematical models of biological systems, such as cell growth, cellular development and differentiation, gene expression, gene regulatory networks, enzyme cascades, synaptic plasticity, aging and population growth need to include stochasticity. These systems are not isolated, but rather subject to intrinsic and extrinsic fluctuations, which leads to a quasi equilibrium state (homeostasis). The natural framework is provided by Markov processes and the Master equation (ME) describes the temporal evolution of the probability of each state, specified by the number of units of each species. The ME is a relevant tool for modeling realistic biological systems and allow also to explore the behavior of open systems. These systems may exhibit not only the classical thermodynamic equilibrium states but also the nonequilibrium steady states (NESS). This thesis deals with biological problems that can be treat with the Master equation and also with its thermodynamic consequences. It is organized into six chapters with four new scientific works, which are grouped in two parts: (1) Biological applications of the Master equation: deals with the stochastic properties of a toggle switch, involving a protein compound and a miRNA cluster, known to control the eukaryotic cell cycle and possibly involved in oncogenesis and with the propose of a one parameter family of master equations for the evolution of a population having the logistic equation as mean field limit. (2) Nonequilibrium thermodynamics in terms of the Master equation: where we study the dynamical role of chemical fluxes that characterize the NESS of a chemical network and we propose a one parameter parametrization of BCM learning, that was originally proposed to describe plasticity processes, to study the differences between systems in DB and NESS.
Resumo:
Anthropogenic activities and climatic processes heavily influence surface water resources by causing their progressive depletion, which in turn affects both societies and the environment. Therefore, there is an urgent need to understand the contribution of human and climatic dynamics on the variation of surface water availability. Here, this investigation is performed on the contiguous United States (CONUS) using remotely-sensed data. Three anthropogenic (i.e., urban area, population, and irrigation) and two climatic factors (i.e., precipitation and temperature) were selected as potential drivers of changes in surface water extent and the overlap between the increase or decrease in these drivers and the variation of surface water was examined. Most of the river basins experienced a surface water gain due to precipitation increase (eastern CONUS), and a reduction of irrigated land (western CONUS). River basins of the arid southwestern region and some river basins of the northeastern area encountered a surface water loss, essentially induced by population growth, along with a precipitation deficit and a general expansion of irrigated land. To further inspect the role of population growth and urbanization on surface water loss, the spatial interaction between human settlements and surface water depletion was examined by evaluating the frequency of surface water loss as a function of distance from urban areas. The decline of the observed frequency was successfully reproduced with an exponential distance-decay model, proving that surface water losses are more concentrated in the proximity of cities. Climatic conditions influenced this pattern, with more widely distributed losses in arid regions compared to temperate and continental areas. The results presented in this Thesis provide an improved understanding of the effects of anthropogenic and climatic dynamics on surface water availability, which could be integrated in the definition of sustainable strategies for urbanization, water management, and surface water restoration.
Resumo:
Protected crop production is a modern and innovative approach to cultivating plants in a controlled environment to optimize growth, yield, and quality. This method involves using structures such as greenhouses or tunnels to create a sheltered environment. These productive solutions are characterized by a careful regulation of variables like temperature, humidity, light, and ventilation, which collectively contribute to creating an optimal microclimate for plant growth. Heating, cooling, and ventilation systems are used to maintain optimal conditions for plant growth, regardless of external weather fluctuations. Protected crop production plays a crucial role in addressing challenges posed by climate variability, population growth, and food security. Similarly, animal husbandry involves providing adequate nutrition, housing, medical care and environmental conditions to ensure animal welfare. Then, sustainability is a critical consideration in all forms of agriculture, including protected crop and animal production. Sustainability in animal production refers to the practice of producing animal products in a way that minimizes negative impacts on the environment, promotes animal welfare, and ensures the long-term viability of the industry. Then, the research activities performed during the PhD can be inserted exactly in the field of Precision Agriculture and Livestock farming. Here the focus is on the computational fluid dynamic (CFD) approach and environmental assessment applied to improve yield, resource efficiency, environmental sustainability, and cost savings. It represents a significant shift from traditional farming methods to a more technology-driven, data-driven, and environmentally conscious approach to crop and animal production. On one side, CFD is powerful and precise techniques of computer modeling and simulation of airflows and thermo-hygrometric parameters, that has been applied to optimize the growth environment of crops and the efficiency of ventilation in pig barns. On the other side, the sustainability aspect has been investigated and researched in terms of Life Cycle Assessment analyses.
Resumo:
The motivating problem concerns the estimation of the growth curve of solitary corals that follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the VBGF for corals is based on two parameters: the ultimate length L∞ and the growth rate k. One aim was to find a more reliable method for estimating these parameters, which can capture the influence of environmental covariates. The main issue with current methods is that they force the linearization of VBGF and neglect intra-individual variability. The idea was to use the hierarchical nonlinear model which has the appealing features of taking into account the influence of collection sites, possible intra-site measurement correlation and variance heterogeneity, and that can handle the influence of environmental factors and all the reliable information that might influence coral growth. This method was used on two databases of different solitary corals i.e. Balanophyllia europaea and Leptopsammia pruvoti, collected in six different sites in different environmental conditions, which introduced a decisive improvement in the results. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of the two parameters and the independence of the ultimate length L∞ from the influence of environmental covariates, so a further aim of the thesis was to propose a new parameterization based on the ultimate length and parameter c which explicitly describes the part of growth ascribable to site-specific conditions such as environmental factors. We explored the possibility of estimating these parameters characterizing the VBGF new parameterization via the nonlinear hierarchical model. Again there was a general improvement with respect to traditional methods. The results of the two parameterizations were similar, although a very slight improvement was observed in the new one. This is, nevertheless, more suitable from a theoretical point of view when considering environmental covariates.
Resumo:
The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.
Resumo:
Aims of the study: To assess the prevalence of Antiepileptic Drug (AED) exposure in pregnant women with or without epilepsy and the comparative risk of terminations of pregnancy (TOPs), spontaneous abortions, stillbirth, major congenital malformations (MCMs) and foetal growth retardation (FGR) following intrauterine AED exposure in the Emilia Romagna region (RER), Northern Italy (4 million inhabitants). Methods: Data were obtained from official regional registries: Certificate of Delivery Assistance, Hospital Discharge Card, reimbursed prescription databases and Registry of Congenital Malformations. We identified all the deliveries, hospitalized abortions and MCMs occurred between January 2009 and December 2011. Results: We identified 145,243 pregnancies: 111,284 deliveries (112,845 live births and 279 stillbirths), 16408 spontaneous abortions and 17551 TOPs. Six hundred and eleven pregnancies (0.42% 95% Cl: 0.39-0.46) were exposed to AEDs. Twenty-one per cent of pregnancies ended in TOP in the AED group vs 12% in the non-exposed (OR:2.24; CI 1.41-3.56). The rate of spontaneous abortions and stillbirth was comparable in the two groups. Three hundred fifty-three babies (0.31%, 95% CI: 0.28-0.35) were exposed to AEDs during the first trimester. The rate of MCMs was 2.3% in the AED group (2.2% in babies exposed to monotherapy and 3.1% in babies exposed to polytherapy) vs 2.0% in the non-exposed. The risk of FGR was 12.7 % in the exposed group compared to 10% in the non-exposed. Discussion and Conclusion: The prevalence of AED exposure in pregnancy in the RER was 0.42%. The rate of MCMs in children exposed to AEDs in utero was almost superimposable to the one of the non-exposed, however polytherapy carried a slightly increased risk . The rate of TOPs was significantly higher in the exposed women. Further studies are needed to clarify whether this high rate reflects a higher rate of MCMs detected prenatally or other more elusive reasons.