6 resultados para Pleistocene fossil reefs

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multidisciplinary study was carried out on the Late Quaternary-Holocene subsurface deposits of two Mediterranean coastal areas: Arno coastal plain (Northern Tyrrhenian Sea) and Modern Po Delta (Northern Adriatic Sea). Detailed facies analyses, including sedimentological and micropalaeontological (benthic foraminifers and ostracods) investigations, were performed on nine continuously-cored boreholes of variable depth (ca. from 30 meters to100 meters). Six cores were located in the Arno coastal plain and three cores in the Modern Po Delta. To provide an accurate chronological framework, twenty-four organic-rich samples were collected along the fossil successions for radiocarbon dating (AMS 14C). In order to reconstruct the depositional and palaeoenvironmental evolution of the study areas, core data were combined with selected well logs, provided by local companies, along several stratigraphic sections. These sections revealed the presence of a transgressive-regressive (T-R) sequence, composing of continental, coastal and shallow-marine deposits dated to the Late Pleistocene-Holocene period, beneath the Arno coastal plain and the Modern Po Delta. Above the alluvial deposits attributed to the last glacial period, the post-glacial transgressive succession (TST) consists of back-barrier, transgressive barrier and inner shelf deposits. Peak of transgression (MFS) took place around the Late-Middle Holocene transition and was identified by subtle micropalaeontological indicators within undifferentiated fine-grained deposits. Upward a thick prograding succession (HST) records the turnaround to regressive conditions that led to a rapid delta progradation in both study areas. Particularly, the outbuilding of modern-age Po Delta coincides with mud-belt formation during the late HST (ca. 600 cal yr BP), as evidenced by a fossil microfauna similar to the foraminiferal assemblage observed in the present Northern Adriatic mud-belt. A complex interaction between allocyclic and autocyclic factors controlled facies evolution during the highstand period. The presence of local parameters and the absence of a predominant factor prevent from discerning or quantifying consequences of the complex relationships between climate and deltaic evolution. On the contrary transgressive sedimentation seems to be mainly controlled by two allocyclic key factors, sea-level rise and climate variability, that minimized the effects of local parameters on coastal palaeoenvironments. TST depositional architecture recorded in both study areas reflects a well-known millennial-scale variability of sea-level rising trend and climate during the Late glacial-Holocene period. Repeated phases of backswamp development and infilling by crevasse processes (parasequences) were recorded in the subsurface of Modern Po Delta during the early stages of transgression (ca. 11,000-9,500 cal yr BP). In the Arno coastal plain the presence of a deep-incised valley system, probably formed at OSI 3/2 transition, led to the development of a thick (ca. 35-40 m) transgressive succession composed of coastal plain, bay-head delta and estuarine deposits dated to the Last glacial-Early Holocene period. Within the transgressive valley fill sequence, high-resolution facies analyses allowed the identification and lateral tracing of three parasequences of millennial duration. The parasequences, ca. 8-12 meters thick, are bounded by flooding surfaces and show a typical internal shallowing-upward trend evidenced by subtle micropalaeontological investigations. The vertical stacking pattern of parasequences shows a close affinity with the step-like sea-level rising trend occurred between 14,000-8,000 cal years BP. Episodes of rapid sea-level rise and subsequent stillstand phases were paralleled by changes in climatic conditions, as suggested by pollen analyses performed on a core drilled in the proximal section of the Arno palaeovalley (pollen analyses performed by Dr. Marianna Ricci Lucchi). Rapid shifts to warmer climate conditions accompanied episodes of rapid sea-level rise, in contrast stillstand phases occurred during temporary colder climate conditions. For the first time the palaeoclimatic signature of high frequency depositional cycles is clearly documented. Moreover, two of the three "regressive" pulsations, recorded at the top of parasequences by episodes of partial estuary infilling in the proximal and central portions of Arno palaeovalley, may be correlated with the most important cold events of the post-glacial period: Younger Dryas and 8,200 cal yr BP event. The stratigraphic and palaeoclimatic data of Arno coastal plain and Po Delta were compared with those reported for the most important deltaic and coastal systems in the worldwide literature. The depositional architecture of transgressive successions reflects the strong influence of millennial-scale eustatic and climatic variability on worldwide coastal sedimentation during the Late glacial-Holocene period (ca. 14,000-7,000 cal yr BP). The most complete and accurate record of high-frequency eustatic and climatic events are usually found within the transgressive succession of very high accommodation settings, such as incised-valley systems where exceptionally thick packages of Late glacial-Early Holocene deposits are preserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modern stratigraphy of clastic continental margins is the result of the interaction between several geological processes acting on different time scales, among which sea level oscillations, sediment supply fluctuations and local tectonics are the main mechanisms. During the past three years my PhD was focused on understanding the impact of each of these process in the deposition of the central and northern Adriatic sedimentary successions, with the aim of reconstructing and quantifying the Late Quaternary eustatic fluctuations. In the last few decades, several Authors tried to quantify past eustatic fluctuations through the analysis of direct sea level indicators, among which drowned barrier-island deposits or coral reefs, or indirect methods, such as Oxygen isotope ratios (δ18O) or modeling simulations. Sea level curves, obtained from direct sea level indicators, record a composite signal, formed by the contribution of the global eustatic change and regional factors, as tectonic processes or glacial-isostatic rebound effects: the eustatic signal has to be obtained by removing the contribution of these other mechanisms. To obtain the most realistic sea level reconstructions it is important to quantify the tectonic regime of the central Adriatic margin. This result has been achieved integrating a numerical approach with the analysis of high-resolution seismic profiles. In detail, the subsidence trend obtained from the geohistory analysis and the backstripping of the borehole PRAD1.2 (the borehole PRAD1.2 is a 71 m continuous borehole drilled in -185 m of water depth, south of the Mid Adriatic Deep - MAD - during the European Project PROMESS 1, Profile Across Mediterranean Sedimentary Systems, Part 1), has been confirmed by the analysis of lowstand paleoshorelines and by benthic foraminifera associations investigated through the borehole. This work showed an evolution from inner-shelf environment, during Marine Isotopic Stage (MIS) 10, to upper-slope conditions, during MIS 2. Once the tectonic regime of the central Adriatic margin has been constrained, it is possible to investigate the impact of sea level and sediment supply fluctuations on the deposition of the Late Pleistocene-Holocene transgressive deposits. The Adriatic transgressive record (TST - Transgressive Systems Tract) is formed by three correlative sedimentary bodies, deposited in less then 14 kyr since the Last Glacial Maximum (LGM); in particular: along the central Adriatic shelf and in the adjacent slope basin the TST is formed by marine units, while along the northern Adriatic shelf the TST is represented by costal deposits in a backstepping configuration. The central Adriatic margin, characterized by a thick transgressive sedimentary succession, is the ideal site to investigate the impact of late Pleistocene climatic and eustatic fluctuations, among which Meltwater Pulses 1A and 1B and the Younger Dryas cold event. The central Adriatic TST is formed by a tripartite deposit bounded by two regional unconformities. In particular, the middle TST unit includes two prograding wedges, deposited in the interval between the two Meltwater Pulse events, as highlighted by several 14C age estimates, and likely recorded the Younger Dryas cold interval. Modeling simulations, obtained with the two coupled models HydroTrend 3.0 and 2D-Sedflux 1.0C (developed by the Community Surface Dynamics Modeling System - CSDMS), integrated by the analysis of high resolution seismic profiles and core samples, indicate that: 1 - the prograding middle TST unit, deposited during the Younger Dryas, was formed as a consequence of an increase in sediment flux, likely connected to a decline in vegetation cover in the catchment area due to the establishment of sub glacial arid conditions; 2 - the two-stage prograding geometry was the consequence of a sea level still-stand (or possibly a fall) during the Younger Dryas event. The northern Adriatic margin, characterized by a broad and gentle shelf (350 km wide with a low angle plunge of 0.02° to the SE), is the ideal site to quantify the timing of each steps of the post LGM sea level rise. The modern shelf is characterized by sandy deposits of barrier-island systems in a backstepping configuration, showing younger ages at progressively shallower depths, which recorded the step-wise nature of the last sea level rise. The age-depth model, obtained by dated samples of basal peat layers, is in good agreement with previous published sea level curves, and highlights the post-glacial eustatic trend. The interval corresponding to the Younger Dyas cold reversal, instead, is more complex: two coeval coastal deposits characterize the northern Adriatic shelf at very different water depths. Several explanations and different models can be attempted to explain this conundrum, but the problem remains still unsolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary goal of volcanological studies is to reconstruct the eruptive history of active volcanoes, by correlating and dating volcanic deposits, in order to depict a future scenario and determine the volcanic hazard of an area. However, alternative methods are necessary where the lack of outcrops, the deposit variability and discontinuity make the correlation difficult, and suitable materials for an accurate dating lack. In this thesis, paleomagnetism (a branch of Geophysics studying the remanent magnetization preserved in rocks) is used as a correlating and dating tool. The correlation is based on the assumption that coeval rocks record similar paleomagnetic directions; the dating relies upon the comparison between paleomagnetic directions recorded by rocks with the expected values from references Paleo-Secular Variation curves (PSV, the variation of the geomagnetic field along time). I first used paleomagnetism to refine the knowledge of the pre – 50 ka geologic history of the Pantelleria island (Strait of Sicily, Italy), by correlating five ignimbrites and two breccias deposits emplaced during that period. Since the use of the paleomagnetic dating is limited by the availability of PSV curves for the studied area, I firstly recovered both paleomagnetic directions and intensities (using a modified Thellier method) from radiocarbon dated lava flows in São Miguel (Azores Islands, Portugal), reconstructing the first PSV reference curve for the Atlantic Ocean for the last 3 ka. Afterwards, I applied paleomagnetism to unravel the chronology and characteristics of Holocene volcanic activity at Faial (Azores) where geochronological age constraints lack. I correlated scoria cones and lava flows yielded by the same eruption on the Capelo Peninsula and dated eruptive events (by comparing paleomagnetic directions with PSV from France and United Kingdom), finding that the volcanics exposed at the Capelo Peninsula are younger than previously believed, and entirely comprised in the last 4 ka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ‘Continental Intercalaire’ deposits of the Tataouine basin of southern Tunisia preserve one of the most diverse Cretaceous vertebrate fauna from Africa. This research project focuses on a detailed revision of the stratigraphic distribution of mid-Cretaceous fossil beds in the Tataouine Basin and includes the description of four, newly discovered vertebrate tracksites. In the Tataouine region, macro- and microvertebrate remains are recovered from three stratigraphic intervals: the lower Douiret Formation (Barremian), the Chenini (rare) and Oum ed Diab members of the Aïn El Guettar Formation (Albian). A detailed, basin-scale revision of the stratigraphic occurrence of fossil-bearing strata indicates 1. lateral facies variability within the context of a low gradient, circalittoral to coastal-plain environment; 2. multiple and diachronous fossil beds which include elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs remains. Four vertebrate tracksites have been discovered in the study area: 1. the Middle Jurassic Beni Ghedir site which preserves approximately 130 tridactyl footprints distributed over an area of 200 square meters, representing the oldest evidence of a dinosaur fauna in Tunisia; 2. the late Albian Chenini tracksite, which includes poorly preserved crocodilian tracks and the dinosaur ichnospecies Apulosauripus federicianus; 3. the Cenomanian Ksar Ayaat locality, where footprints assigned to a pleurodiran turtle are exposed, and 4. the upper Cenomanian Jebel Boulouha site which presents almost 100 well-preserved tridactyl tracks referred to small-sized theropods, fossil bird tracks - ichnogenus Koreanaorins – and tracks referred to a mammalian trackmaker, representing the first report of fossil bird and mammal from the Cretaceous of continental Africa and Tunisia respectively. In addition, data collected from the Tunisian tracksites have been compared with coeval tracksites in Italy and Croatia, showing analogies in morphology and paleoenvironment of dinosaur ichnoassociations, supporting the already hypothesized subaerial connection between these areas during the mid-Cretaceous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and evolution of galaxy bulges is a greatly debated topic in modern astrophysics. An approach to address this issue is to look at the Galactic bulge, the closest to us. According to some theoretical models, our bulge built-up from the merger of substructures formed from the instability and fragmentation of a proto-disk in the early phases of Galactic evolution. We may have discovered the remnant of one of these substructures: the stellar system Terzan 5. Terzan 5 hosts two stellar populations with different iron abundances, thus suggesting it once was far more massive than today. Moreover, its peculiar chemistry resembles that observed only in the Galactic bulge. In this Thesis we perform a detailed photometric and spectroscopic analysis of this cluster to determine its formation and evolutionary histories. Form the photometric point of view we built a high-resolution differential reddening map in Terzan 5 direction and we measured relative proper motions to separate its member population from the contaminating field stars. This information represents the necessary work to measure the absolute ages of Terzan 5 populations via the Turn-off luminosity method. From the spectroscopic point of view we measured abundances for more than 600 stars belonging to Terzan 5 and its surroundings in order to build the largest field-decontaminated metallicity distribution for this system. We find that the metallicity distribution is extremely wide (more than 1 dex) and we discovered a third, metal-poor and alpha-enhanced population with average [Fe/H]=-0.8. The striking similarity between Terzan 5 and the bulge in terms of their chemical formation and evolution revealed by this Thesis suggests that Terzan 5 formed in situ with the bulge itself. In particular its metal-poor populations trace the early stages of the bulge formation, while its most metal-rich component contains crucial information on the bulge more recent evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of industrial agricolture on fossil fuels has been assessed in two comparative case studies between Italy (Emilia-Romagna and Piemonte)and Missouri. The first is related to dairy farming; 15 different farms were surveyed, divided into three different groups: grain based, pasture based and organic. The second is devoted to rice cropping; 12 holdings were examined divided into two groups: conventional and organic. Energy footprint was determined for structures, machinery, fertilizers, pesticides, fuel, electricity, feed and seeds. Possible scenarios of transition to a more sustainable agricolture based on renewable energy sources were analized in detail for all the farms analized.