8 resultados para Plasma-based nanoassembly
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
As proviral human immunodeficiency virus type 1 (HIV-1) DNA can replenish and revive viral infection upon attivation, its analysis, in addition to RNA viral load, could be considered a useful marker during the follow-up of infected individuals, to evaluate reservoir status, especially in HAART-treated patients when RNA viral load is undetectable by current techniques and the antiretroviral efficacy of new, more potent therapeutic regimens. Standardized methods for the measurement of the two most significant forms of proviral DNA, total and non-integrated, are currently lacking, despite the widespread of molecular biology techniques. In this study, total and 2-LTR HIV-1 DNA proviral load, in addition to RNA viral load, CD4 cell count and serological parameters, were determined by quantitative analysis in peripheral blood mononuclear cells (PBMC) in naïve or subsequently HAART-treated patients with acute HIV-1 infection in order to establish the role of these two DNA proviral forms in the course of HIV infection. The study demonstrated that HAART-treated individuals show a significant decrease in both total and 2-LTR circular HIV-1 DNA proviral load compared with naïve patients: these findings confirm that HIV-1 reservoir decay correlates with therapeutic effectiveness. The persistence of small amounts of 2-LTR HIV-1 DNA form, which is considered to be a molecular determinant of infectivity, in PBMC from some patients demonstrates that a small rate of replication is retained even when HAART is substantially effective: HAART could not eradicate completely the infection because HIV is able to replicate at low levels. Plasma-based viral RNA assays may fail to demonstrate the full extent of viral activity. In conclusion, the availability of a new standardized assay to determine DNA proviral load will be important in assessing the true extent of virological suppression suggesting that its quantification may be an important parameter in monitoring HIV infection.
Resumo:
The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, which comprises a press fit hafnium insert in a copper body holder, to improve its durability. Based on a deep analysis of both the scientific and patent literature, different solutions were proposed and tested. First, the behaviour of Hf cathodes when operating at high current levels (250A) in oxidizing atmosphere has been experimentally investigated optimizing, with respect to expected service life, the initial shape of the electrode emissive surface. Moreover, the microstructural modifications of the Hf insert in PAC electrodes were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Thereafter, the research activity focussed on producing, characterizing and testing prototypes of composite inserts, combining powders of a high thermal conductibility (Cu, Ag) and high thermionic emissivity (Hf, Zr) materials The complexity of the thermal plasma torch environment required and integrated approach also involving physical modelling. Accordingly, a detailed line-by-line method was developed to compute the net emission coefficient of Ar plasmas at temperatures ranging from 3000 K to 25000 K and pressure ranging from 50 kPa to 200 kPa, for optically thin and partially autoabsorbed plasmas. Finally, prototypal electrodes were studied and realized for a newly developed plasma source, based on the plasma needle concept and devoted to the generation of atmospheric pressure non-thermal plasmas for biomedical applications.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Resumo:
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.
Resumo:
The use of atmospheric pressure plasmas for thin film deposition on thermo-sensitive materials is currently one of the main challenges of the plasma scientific community. Despite the growing interest in this field, the existing knowledge gap between gas-phase reaction mechanisms and thin film properties is still one of the most important barriers to overcome for a complete understanding of the process. In this work, thin films surface characterization techniques, combined with passive and active gas-phase diagnostic methods, were used to provide a comprehensive study of the Ar/TEOS deposition process assisted by an atmospheric pressure plasma jet. SiO2-based thin films exhibiting a well-defined chemistry, a good morphological structure and high uniformity were studied in detail by FTIR, XPS, AFM and SEM analysis. Furthermore, non-intrusive spectroscopy techniques (OES, filter imaging) and laser spectroscopic methods (Rayleigh scattering, LIF and TALIF) were employed to shed light on the complexity of gas-phase mechanisms involved in the deposition process and discuss the influence of TEOS admixture on gas temperature, electron density and spatial-temporal behaviours of active species. The poly-diagnostic approach proposed in this work opens interesting perspectives both in terms of process control and optimization of thin film performances.
Resumo:
Since last century, the rising interest of value-added and advanced functional materials has spurred a ceaseless development in terms of industrial processes and applications. Among the emerging technologies, thanks to their unique features and versatility in terms of supported processes, non-equilibrium plasma discharges appear as a key solvent-free, high-throughput and cost-efficient technique. Nevertheless, applied research studies are needed with the aim of addressing plasma potentialities optimizing devices and processes for future industrial applications. In this framework, the aim of this dissertation is to report on the activities carried out and the results achieved concerning the development and optimization of plasma techniques for nanomaterial synthesis and processing to be applied in the biomedical field. In the first section, the design and investigation of a plasma assisted process for the production of silver (Ag) nanostructured multilayer coatings exhibiting anti-biofilm and anti-clot properties is described. With the aim on enabling in-situ and on-demand deposition of Ag nanoparticles (NPs), the optimization of a continuous in-flight aerosol process for particle synthesis is reported. The stability and promising biological performances of deposited coatings spurred further investigation through in-vitro and in-vivo tests which results are reported and discussed. With the aim of addressing the unanswered questions and tuning NPs functionalities, the second section concerns the study of silver containing droplet conversion in a flow-through plasma reactor. The presented results, obtained combining different analysis techniques, support a formation mechanism based on droplet to particle conversion driven by plasma induced precursor reduction. Finally, the third section deals with the development of a simulative and experimental approach used to investigate the in-situ droplet evaporation inside the plasma discharge addressing the main contributions to liquid evaporation in the perspective of process industrial scale up.
Resumo:
Cancer research and development of targeting agents in this field is based on robust studies using preclinical models. The failure rate of standardized treatment approaches for several solid tumors has led to the urgent need to fine-tune more sophisticated and faithful preclinical models able to recapitulate the features of in vivo human tumors, with the final aim to shed light on new potential therapeutic targets. Epithelial Ovarian Cancer (EOC) serous histotype (HGSOC) is one of the most lethal diseases in women due to its high aggressiveness (75% of patients diagnosed at FIGO III-IV state) and poor prognosis (less of 50% in 5 years), whose therapy often fails as chemoresistance sets in. This thesis aimed at using the novel perfusion-based bioreactor U-CUP that provides direct perfusion throughout the tumor tissue seeking to obtain an EOC 3D ex vivo model able to recapitulate the features of the original tumor including the tumor microenvironment and maintaining its cellular heterogeneity. Moreover, we optimized this approach so that it can be successfully applied to slow-frozen tumoral tissues, further extending the usefulness of this tool. We also investigated the effectiveness of Plasma Activated Ringer’s Lactate solution (PA-RL) against Epithelial Ovarian Cancer (EOC) serous histotype in both 2D and 3D cultures using ex-vivo specimens from HGSOC patients. We propose PA-RL as a novel therapy with local intraperitoneal administration, which could act on primary or metastatic ovarian tumors inducing a specific cancer cell death with reduced damage on the surrounding healthy tissues.
Resumo:
Plasma medicine is a branch of plasma-promising biomedical applications that uses cold atmospheric plasma (CAP) as a therapeutic agent in treating a wide range of medical conditions including cancer. Epithelial ovarian cancer (EOC) is a highly malignant and aggressive form of ovarian cancer, and most patients are diagnosed at advanced stages which significantly reduces the chances of successful treatment. Treatment resistance is also common, highlighting the need for novel therapies to be developed to treat EOC. Research in Plasma Medicine has revealed that plasma has unique properties suitable for biomedical applications and medical therapies, including responses to hormetic stimuli. However, the exact mechanisms by which CAP works at the molecular level are not yet fully understood. In this regard, the main goal of this thesis is to identify a possible adjuvant therapy for cancer, which could exert a cytotoxic effect, without damaging the surrounding healthy cells. An examination of different plasma-activated liquids (PALs) revealed their potential as effective tools for significantly inhibiting the growth of EOC. The dose-response profile between PALs and their targeted cytotoxic effects on EOC cells without affecting healthy cells was established. Additionally, it was validated that PALs exert distinct effects on different subtypes of EOC, possibly linked to the cells' metabolism. This suggests the potential for developing new, personalized anticancer strategies. Furthermore, it was observed that CAP treatment can alter the chemistry of a biomolecule present in PAL, impacting its cytotoxic activity. The effectiveness of the treatment was also preliminarily evaluated in 3D cultures, opening the door for further investigation of a possible correlation between the tumor microenvironment and PALs' resistance. These findings shed light on the intricate interplay between CAP and the liquid substrate and cell behaviour, providing valuable insights for the development of a novel and promising CAP-based cancer treatment for clinical application.