10 resultados para Plasma processing and deposition
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The principal aim of this research project has been the evaluation of the specific role of yeasts in ripening processes of dry-cured meat products, i.e. speck and in salami produced by adding Lactobacilli starter cultures, i.e. L. sakei, L. casei, L. fermentum, L. rhamnosus, L.sakei + S.xylosus. In particular the contribution of the predominant yeasts to the hydrolytic patterns of meat proteins has been studied both in model system and in real products. In fact, although several papers have been published on the microbial, enzymatic, aromatic and chemical characterization of dry-cured meat e.g. ham over ripening, the specific role of yeasts has been often underestimated. Therefore this research work has been focused on the following aspects: 1. Characterization of the yeasts and lactic acid bacteria in samples of speck produced by different farms and analyzed during the various production and ripening phases 2. Characterization of the superficial or internal yeasts population in salami produced with or without the use of lactobacilli as starter cultures 3. Molecular characterization of different strains of yeasts and detection of the dominant biotypes able to survive despite environmental stress factors (such as smoke, salt) 4. Study of the proteolytic profiles of speck and salami during the ripening process and comparison with the proteolytic profiles produced in meat model systems by a relevant number of yeasts isolated from speck and salami 5. Study of the proteolytic profiles of Lactobacilli starter cultures in meat model systems 6. Comparative statistical analysis of the proteolytic profiles to find possible relationships between specific bands and peptides and specific microorganisms 7. Evaluation of the aromatic characteristics of speck and salami to assess relationships among the metabolites released by the starter cultures or the dominant microflora
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
Air quality represents a key issue in the so-called pollution “hot spots”: environments in which anthropogenic sources are concentrated and dispersion of pollutants is limited. One of these environments, the Po Valley, normally experiences exceedances of PM10 and PM2.5 concentration limits, especially in winter when the ventilation of the lower layers of the atmosphere is reduced. This thesis provides a highlight of the chemical properties of particulate matter and fog droplets in the Po Valley during the cold season, when fog occurrence is very frequent. Fog-particles interactions were investigated with the aim to determine their impact on the regional air quality. Size-segregated aerosol samples were collected in Bologna, urban site, and San Pietro Capofiume (SPC), rural site, during two campaigns (November 2011; February 2013) in the frame of Supersito project. The comparison between particles size-distribution and chemical composition in both sites showed the relevant contribution of the regional background and secondary processes in determining the Po Valley aerosol concentration. Occurrence of fog in November 2011 campaign in SPC allowed to investigate the role of fog formation and fog chemistry in the formation, processing and deposition of PM10. Nucleation scavenging was investigated with relation to the size and the chemical composition of particles. We found that PM1 concentration is reduced up to 60% because of fog scavenging. Furthermore, aqueous-phase secondary aerosol formation mechanisms were investigated through time-resolved measurements. In SPC fog samples have been systematically collected and analysed since the nineties; a 20 years long database has been assembled. This thesis reports for the first time the results of this long time series of measurements, showing a decrease of sulphate and nitrate concentration and an increase of pH that reached values close to neutrality. A detailed discussion about the occurred changes in fog water composition over two decades is presented.
Assessing brain connectivity through electroencephalographic signal processing and modeling analysis
Resumo:
Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.
Resumo:
In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.
Resumo:
Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.
Resumo:
This study is focused on radio-frequency inductively coupled thermal plasma (ICP) synthesis of nanoparticles, combining experimental and modelling approaches towards process optimization and industrial scale-up, in the framework of the FP7-NMP SIMBA European project (Scaling-up of ICP technology for continuous production of Metallic nanopowders for Battery Applications). First the state of the art of nanoparticle production through conventional and plasma routes is summarized, then results for the characterization of the plasma source and on the investigation of the nanoparticle synthesis phenomenon, aiming at highlighting fundamental process parameters while adopting a design oriented modelling approach, are presented. In particular, an energy balance of the torch and of the reaction chamber, employing a calorimetric method, is presented, while results for three- and two-dimensional modelling of an ICP system are compared with calorimetric and enthalpy probe measurements to validate the temperature field predicted by the model and used to characterize the ICP system under powder-free conditions. Moreover, results from the modeling of critical phases of ICP synthesis process, such as precursor evaporation, vapour conversion in nanoparticles and nanoparticle growth, are presented, with the aim of providing useful insights both for the design and optimization of the process and on the underlying physical phenomena. Indeed, precursor evaporation, one of the phases holding the highest impact on industrial feasibility of the process, is discussed; by employing models to describe particle trajectories and thermal histories, adapted from the ones originally developed for other plasma technologies or applications, such as DC non-transferred arc torches and powder spherodization, the evaporation of micro-sized Si solid precursor in a laboratory scale ICP system is investigated. Finally, a discussion on the role of thermo-fluid dynamic fields on nano-particle formation is presented, as well as a study on the effect of the reaction chamber geometry on produced nanoparticle characteristics and process yield.
Resumo:
In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.
Resumo:
In the last decades, the possibility to generate plasma at atmospheric pressure gave rise to a new emerging field called plasma medicine; it deals with the application of cold atmospheric pressure plasmas (CAPs) or plasma-activated solutions on or in the human body for therapeutic effects. Thanks to a blend of synergic biologically active agents and biocompatible temperatures, different CAP sources were successfully employed in many different biomedical applications such as dentistry, dermatology, wound healing, cancer treatment, blood coagulation, etc.… Despite their effectiveness has been verified in the above-mentioned biomedical applications, over the years, researchers throughout the world described numerous CAP sources which are still laboratory devices not optimized for the specific application. In this perspective, the aim of this dissertation was the development and the optimization of techniques and design parameters for the engineering of CAP sources for different biomedical applications and plasma medicine among which cancer treatment, dentistry and bioaerosol decontamination. In the first section, the discharge electrical parameters, the behavior of the plasma streamers and the liquid and the gas phase chemistry of a multiwire device for the treatment of liquids were performed. Moreover, two different plasma-activated liquids were used for the treatment of Epithelial Ovarian Cancer cells and fibroblasts to assess their selectivity. In the second section, in accordance with the most important standard regulations for medical devices, were reported the realization steps of a Plasma Gun device easy to handle and expected to be mounted on a tabletop device that could be used for dental clinical applications. In the third section, in relation to the current COVID-19 pandemic, were reported the first steps for the design, realization, and optimization of a dielectric barrier discharge source suitable for the treatment of different types of bioaerosol.