7 resultados para Planty ecology
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.
Resumo:
This research focuses on reproductive biology and pollination ecology of entomophilous angiosperms, with particular concern to reproductive success in small and isolated populations of species that occur at their distribution limits or are endemic. I considered three perennial herbs as model species: Primula apennina Widmer, Dictamnus albus L. and Convolvulus lineatus L. I carried out field work on natural populations and performed laboratory analyses on specific critical aspects (resource allocation, pollen viability, stigmatic receptivity, physiological self-incompatibility, seed viability), through which I analysed different aspects related to plant fitness, such as production of viable seed, demographic structure of populations, type and efficiency of plant-pollinator system, and limiting factors.
Resumo:
This PhD thesis reports on car fluff management, recycling and recovery. Car fluff is the residual waste produced by car recycling operations, particularly from hulk shredding. Car fluff is known also as Automotive Shredder Residue (ASR) and it is made of plastics, rubbers, textiles, metals and other materials, and it is very heterogeneous both in its composition and in its particle size. In fact, fines may amount to about 50%, making difficult to sort out recyclable materials or exploit ASR heat value by energy recovery. This 3 years long study started with the definition of the Italian End-of-Life Vehicles (ELVs) recycling state of the art. A national recycling trial revealed Italian recycling rate to be around 81% in 2008, while European Community recycling target are set to 85% by 2015. Consequently, according to Industrial Ecology framework, a life cycle assessment (LCA) has been conducted revealing that sorting and recycling polymers and metals contained in car fluff, followed by recovering residual energy, is the route which has the best environmental perspective. This results led the second year investigation that involved pyrolysis trials on pretreated ASR fractions aimed at investigating which processes could be suitable for an industrial scale ASR treatment plant. Sieving followed by floatation reported good result in thermochemical conversion of polymers with polyolefins giving excellent conversion rate. This factor triggered ecodesign considerations. Ecodesign, together with LCA, is one of the Industrial Ecology pillars and it consists of design for recycling and design for disassembly, both aimed at the improvement of car components dismantling speed and the substitution of non recyclable material. Finally, during the last year, innovative plants and technologies for metals recovery from car fluff have been visited and tested worldwide in order to design a new car fluff treatment plant aimed at ASR energy and material recovery.
Resumo:
This research focuses on taxonomy, phylogeny and reproductive ecology of Gentiana lutea. L.. Taxonomic analysis is a critical step in botanical studies, as it is necessary to recognize taxonomical unit. Herbarium specimens were observed to assess the reliability of several subspecies-diagnostic characters. The analysis of G. lutea genetic variability and the comparison with that of the other species of sect. Gentiana were performed to elucidate phylogenetic relationships among G. lutea subspecies and to propose a phylogenetic hypothesis for the evolution and the colonization dynamics of the section. Appropriate scientific information is critical for the assessment of species conservation status and for effective management plans. I carried out field work on five natural populations and performed laboratory analyses on specific critical aspects, with special regard to G. lutea breeding system and type and efficiency of plant-pollinator system. Bracts length is a reliable character to identify subsp. vardjanii, however it is not exclusive, hence to clearly identify subsp. vardjanii, other traits have to be considered. The phylogenetic hypotheses obtained from nuclear and chloroplast data are not congruent. Nuclear markers show a monophyly of sect. Gentiana, a strongly species identity of G. lutea and clear genetic identity of subsp. vardjanii. The little information emerging from plastid markers indicate a weak signal of hybridization and incomplete sorting of ancestral lineages. G. lutea shows a striking variation in intra-floral dichogamy probably evolved to reduce pollen-stigma interference. Although the species is partially self-compatible, pollen vectors are necessary for a successful reproduction, and moreover it shows a strong inbreeding depression. G. lutea is a generalist species: within its spectrum of visitors is possible to recognize "nectar thieves" and pollinators with sedentary or dynamic behaviour. Pollen limitation is frequent and it could be mainly explained by poor pollen quality.
Resumo:
This PhD Thesis includes five main parts on diverse topics. The first two parts deal with the trophic ecology of wolves in Italy consequently to a recent increase of wild ungulates abundance. Data on wolf diet across time highlighted how wild ungulates are important food resource for wolves in Italy. Increasing wolf population, increasing numbers of wild ungulates and decreasing livestock consume are mitigating wolf-man conflicts in Italy in the near future. In the third part, non-invasive genetic sampling techniques were used to obtain genotypes and genders of about 400 wolves. Thus, wolf packs were genetically reconstructed using diverse population genetic and parentage software. Combining the results on pack structure and genetic relatedness with sampling locations, home ranges of wolf packs and dispersal patterns were identified. These results, particularly important for the conservation management of wolves in Italy, illustrated detailed information that can be retrieved from genetic identification of individuals. In the fourth part, wolf locations were combined with environmental information obtained as GIS-layers. Modern species distribution models (niche models) were applied to infer potential wolf distribution and predation risk. From the resulting distribution maps, information pastures with the highest risk of depredation were derived. This is particularly relevant as it allows identifying those areas under danger of carnivore attack on livestock. Finally, in the fifth part, habitat suitability models were combined with landscape genetic analysis. On one side landscape genetic analyses on the Italian wolves provided new information on the dynamics and connectivity of the population and, on the other side, a profound analysis of the effects that habitat suitability methods had on the parameterization of landscape genetic analyses was carried out to contributed significantly to landscape genetic theory.
Resumo:
The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.