10 resultados para Plant-pathogen relationships
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Rapid Alkalinization Factor (RALF) are cysteins-rich peptides ubiquitous in plant kingdom. They play multiple roles as hormone signals and recently their involvement in host-pathogen crosstalk as negative regulator of immunity in Arabidopsis has also been recognized. In addition, RALF homologue peptides are secreted by different fungal pathogens as effectors during early stages of infections. The aim of this work was to characterize RALF genes as susceptibility factors during plant pathogen interaction in strawberry. For this, the genomic organization of the RALF gene families in the octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of Fragaria vesca were described , identifying 13 member in F. vesca (FvRALF) and 50 members in F. x ananassa (FaRALF). The changes in expression of fruit FaRALF genes was investigated upon infection with C.acutatum and B. cinerea showing that, among RALF genes expressed in fruit, FaRALF3 was the only one upregulated by fungal infection in the ripe stage. A role of FaRALF3 as susceptibility gene was then assessed trough Agrobacterium-mediated transient FaRALF3 overexpression and silencing in fruits, revealing that FaRALF3 expression promotes fungal growth and hyphae penetration in host tissues. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FaRALF3 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FaRALF3 promoter identified a 5’ region required for FaRALF3 expression in fruit, but failed to identify a region responsible for fungal induced expression. Furthermore, FaRALF3 and strawberry receptor FERONIA (FaMRLK47) were heterologously expressed in E. coli in order to purify active proteins forms and study RALF-FERONIA interaction in strawberry. However, it was not possible to obtain pure and active proteins. Finally RNAi transgenic plants silenced for the FvRALF13 gene were genotypically and phenotypically characterized suggesting a role of FvRALF13 in flowering time regulation and reproductive organs development.
Resumo:
Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.
Resumo:
Oggetto della ricerca è il tema dello spazio delle centrali idroelettriche costruite nella prima metà del Novecento dagli architetti Giovanni Muzio e Piero Portaluppi. L’individuazione del tema sorge dalla volontà di indagare quali siano stati gli sviluppi dal punto di vista architettonico all’interno di un genere così specifico durante un periodo di tempo in cui gli stili architettonici e le tendenze hanno subito stravolgimenti ed evoluzioni che ancora oggi trovano una difficile connotazione e definizione precisa. L’analisi dell’architettura delle centrali idroelettriche, effettuata ripercorrendo le principali vicende del settore idroelettrico dalla fine del secolo scorso al secondo dopoguerra, oltre a considerare il rapporto con il contesto territoriale e culturale del nostro Paese vuole prendere in considerazione anche il particolare rapporto che in più casi si è venuto a creare tra committenti e progettisti. Compito della tesi è rileggere un settore poco indagato finora e capire se vi sia stata effettivamente una evoluzione architettonica dal punto di vista tipologico o se la centrale sia stata sempre affrontata come semplice esercizio di “vestizione” di un involucro precostituito da precise esigenze tecniche. La ricerca infatti si pone come obiettivo lo studio delle centrali non solo dal punto di vista tipologico e spaziale dei suoi principali elementi, ma si pone come obiettivo anche lo studio della loro distribuzione nel sito in cui sono sorte, distribuzione che spesso ha portato alla formazione di una sorta di vera e propria “città elettrica”, in cui la composizione dei vari elementi segue una logica compositiva ben precisa. Dal punto di vista del contributo originale la ricerca vuole proporre una serie di riflessioni ed elaborati inerenti alcune centrali non ancora indagate. Nel caso specifico di Portaluppi l’apporto originale consiste nell’aver portato alla luce notizie inerenti centrali che sono sempre state poste in secondo piano rispetto le ben più note e studiate centrali della Val d’Ossola. Nel caso invece di Muzio il contributo consiste in una analisi approfondita e in una comparazione di documenti che di solito sono sempre stati pubblicati come semplice apparato iconografico, ma che messi a confronto danno una lettura di quelle che sono state le fasi e le elaborazioni progettuali apportate dall’autore. Il tema della ricerca è stato affrontato poi attraverso una lettura delle fonti dirette relative agli scritti degli autori, con una contemporanea lettura di testi, articoli e interventi tratti dalle riviste appartenenti al periodo in esame per comprendere al meglio il panorama culturale e architettonico che hanno fatto da scenario alle esperienze di entrambe le figure oggetto di studio. Infine la ricerca si è concentrata sull’analisi di alcune opere in particolare - due centrali idroelettriche per ciascun autore oggetto della tesi - scelte perché considerate rappresentative sia per impianto spaziale e tipologico, sia per le scelte compositive e stilistiche adottate. La lettura dei manufatti architettonici scelti è stata condotta con l’analisi di copie di elaborati grafici originali, foto d’epoca e altri documenti reperiti grazie ad una ricerca condotta in vari archivi. Le centrali scelte nell’ambito delle esperienze maturate da Muzio e Portaluppi sono state individuate per rappresentare il quadro relativo allo sviluppo e alla ricerca di un nuovo linguaggio formale da adottare nell’ambito dell’architettura di questi manufatti. Per entrambi i protagonisti oggetto della ricerca sono state individuate due centrali in grado di dare una visione il più possibile completa dell’evoluzione della tematica delle centrali idroelettriche all’interno della loro esperienza, prendendo in considerazione soprattutto gli aspetti legati all’evoluzione del loro linguaggio compositivo e stilistico. L’individuazione delle centrali da analizzare è stata dettata prendendo in considerazione alcuni fattori come il tipo di impianto, le relazioni e confronto con il contesto geografico e naturale e le soluzioni adottate.
Resumo:
The objective was to analyse population structure and to determine genetic diversity of Erysiphe necator (syn. Uncinula necator) populations obtained from some vineyards located in the South-East Po valley (Italy). Powdery mildew is one of the most important fungal diseases of grapes (Vitis vinifera L.) throughout the world. The causal agent is the haploid, heterothallic ascomycete E. necator. It is an obligate biotrophic fungus and it can be found only on green organs of plants belonging to the family Vitaceae. For this pathogen, two sympatric populations (groups A and B) have been described in Europe and Australia. The two genetic groups differ at multiple genetic loci and previous studies reported a lack of interfertility among isolates of the two groups. There are now several well documented examples of plant pathogen species, such as Leptosphaeria maculans, Gaeumannomyces graminis var. tritici, Botrytis cinerea and Erysiphe syringae, which are indeed composed of genetically differentiated clades, that have led to the description of new groups or even new species. Several studies have suggested that genetic E. necator group A and B correlated with ecological features of the pathogen; some researchers proposed that group A isolates over-winter as resting mycelium within dormant buds, and in spring originate infected shoots, known as Flag shoots, while group B isolates would survive as ascospores in overwintering cleistothecia. However, the association between genetic groups and mode of over-wintering has been challenged by recent studies reporting that flag-shoot may be originated indifferently by group A or group B isolate. Previous studies observed a strong association between the levels of disease severity at the end of the growing season and the initial compositions of E. necator populations in commercial vineyards. The frequencies of E. necator genetic groups vary considerably among vineyards, and the two groups may coexist in the same vineyard. This finding suggests that we need more information on the genetics and epidemiology of E. necator for optimize the crop management In this study we monitored E. necator populations in different vineyards in Emilia – Romagna region (Italy), where the pathogen overwinters both as flagshoots and as cleistothecia. During the grape growing season, symptomatic leaves were sampled early in the growing season and both leaves and berries later during the epidemic growth of the disease. From each sample, single-conidial isolate was obtained. Each isolates was grown on V. vinifera leaf cv. Primitivo and after harvesting the mycelium, the DNA was purified and used as template for PCR amplification with SCAR primers (Sequences Characterised Amplified Region ), -tubulin, IGS sequences and Microsatellite markers (SSR). Amplified DNA from b-tubulin and IGS loci was digested with AciI and XhoI restriction enzymes, respectively, to show single-nucleotide polymorphisms specific for the two genetic groups. The results obtained indicated that SCAR primers are not useful to study the epidemiology. of E. necator conversely the b-tubulin IGS sequences and SSR. Summarize the results obtained with b-tubulin, IGS sequences, in treated vineyards we have found individuals of group B along all grape growing season, whereas in the untreated vineyard individuals of the two genetic groups A and B coexisted throughout the season, with no significant change of their frequency. DNA amplified from ascospores of single cleistothecia showed the presence of markers diagnostic for either groups A and B and were seldom observed also the coexistence of both groups within a claistothecium. These results indicate that individuals of the two groups mated in nature and were able to produced ascospores. With SSR we showed the possibility of recombination between A and B groups in field isolates. During winter, cleistothecia were collected repeatedly in the same vineyards sampling leaves fallen on ground, exfoliating bark from trunks, and from soil. From each substrate, was assess the percentage of cleistothecia containing viable ascospores. Our results confirmed that cleisthotecia contained viable ascospores, therefore they have the potential to be an additional and important source of primary inoculum in Emilia-Romagna vineyards.
Resumo:
The PhD thesis was developed in the framework of Innovar H2020 project. This project aimed at using genomics, transcriptomics and phenotyping techniques to update varietal registration procedure used in Europe for Value of Cultivation and Use (VCU) and Distinctiness Uniformity and Stability (DUS) protocols. The phenotypic and genotypic diversity of a durum wheat panel were assessed for different agronomic traits, connected with wheat development, disease resistance and spike fertility. A panel of 253 durum wheat varieties was characterized for VCU and DUS traits and genotyped with Illumina 90K SNP Chip array (Wang et al., 2014). GWAS analysis was performed, detecting strong QTLs confirmed also by literature review. Candidate genes were identified for each trait and molecular markers will be developed to be used for marker assisted selection in breeding programs. As for disease resistance, the panel was evaluated for resistance to Soil-Borne-Cereal-Mosaic-Virus (SBCMV). A major QTL, sbm2, was detected on chromosome 2B responsible for durum wheat resistance (Maccaferri et al., 2011). The sbm2 interval was explored by fine mapping on segregant population using KASP markers and by RNASeq analysis, detecting candidate genes involved in plant-pathogen reaction. As regards yield related traits, detailed analysis was performed on the GNI-2A QTL (Milner et al., 2016), responsible for increased number spike fertility. Fine mapping analysis was performed on durum panel identifying hox2 a strong candidate gene, codifying for transcription factor protein. The gene is paralogue of GNI-1 (Sakuma et al., 2019), and it has a 4 kbp deletion responsible for increased number of florets per spikelet. To conclude, the herein reported thesis shows a complete characterization of agronomic and disease resistance traits in modern durum wheat varieties. The results obtained will augment available information for each variety, identifying informative molecular markers for breeding purposes and QTLs/candidate genes responsible for different agronomic traits.
Resumo:
Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.
Resumo:
Plant communities on weathered rock and outcrops are characterized by high values in species richness (Dengler 2006) and often persist on small and fragmented surfaces. Yet very few studies have examined the relationships between heterogeneity and plant diversity at small scales, in particular in poor-nutrient and low productive environment (Shmida and Wilson 1985, Lundholm 2003). In order to assess these relationships both in space and time in relationship, two different approaches were employed in the present study, in two gypsum outcrops of Northern Apennine. Diachronic and synchronic samplings from April 2012 to March 2013 were performed. A 50x50 cm plot was used in both samplings such as the sampling unit base. The diachronic survey aims to investigate seasonal patterning of plant diversity by the use of images analysis techniques integrated with field data and considering also seasonal climatic trend, the substrate quality and its variation in time. The purpose of the further, synchronic sampling was to describe plant diversity pattern as a function of the environmental heterogeneity meaning in substrate typologies, soil depth and topographic features. Results showed that responses of diversity pattern depend both on the resources availability, environmental heterogeneity and the manner in which the different taxonomic group access to them during the year. Species richness and Shannon diversity were positively affected by increasing in substrate heterogeneity. Furthermore a good turnover in seasonal species occurrence was detected. This vegetation may be described by the coexistence of three groups of species which created a gradient from early colonization stages, characterized by greater slope and predominance of bare rock, gradually to situation of more developed soil.
Resumo:
Habitat loss and fragmentation have a prominent role in determining the size of plant populations, and can affect plant-pollinator interactions. It is hypothesized that in small plant populations the ability to set seeds can be reduced due to limited pollination services, since individuals in small populations can receive less quantity or quality of visits. In this study, I investigated the effect of population size on plant reproductive success and insect visitation in 8 populations of two common species in the island of Lesvos, Greece (Mediterranean Sea), Echium plantagineum and Ballota acetabulosa, and of a rare perennial shrub endemic to north-central Italy, Ononis masquillierii. All the three species depended on insect pollinators for sexual reproduction. For each species, pollen limitation was present in all or nearly all populations, but the relationship between pollen limitation and population size was only present in Ononis masquillierii. However, in Echium plantagineum, significant relationships between both open-pollinated and handcrossed-pollinated seed sets and population size were found, being small populations comparatively less productive than large ones. Additionally, for this species, livestock grazing intensity was greater for small populations and for sparse patches, and had a negative influence on productivity of the remnant plants. Both Echium plantagineum and Ballota acetabulosa attracted a great number of insects, representing a wide spectrum of pollinators, thereby can be considered as generalist species. For Ballota acetabulosa, the most important pollinators were megachilid female bees, and insect diversity didn’t decrease with decreasing plant population size. By contrast, Ononis masquillierii plants generally received few visits, with flowers specialized on small bees (Lasioglossum spp.), representing the most important insect guild. In Echium plantagineum and Ballota acetabulosa, plants in small and large populations received the same amount of visits per flower, and no differences in the number of intraplant visited flowers were detected. On the contrary, large Ononis populations supported higher amounts of pollinators than small ones. At patch level, high Echium flower density was associated with more and higher quality pollinators. My results indicate that small populations were not subject to reduced pollination services than large ones in Echium plantagineum and Ballota acetabulosa, and suggest that grazing and resource limitation could have a major impact on population fitness in Echium plantagineum. The absence of any size effects in these two species can be explained in the light of their high local abundance, wide habitat specificity, and ability to compete with other co-flowering species for pollinators. By contrast, size represents a key characteristic for both pollination and reproduction in Ononis masquillierii populations, as an increase in size could mitigate the negative effects coming from the disadvantageous reproductive traits of the species. Finally, the widespread occurrence of pollen limitation in the three species may be the result of 1) an ongoing weakening or disruption of plantpollinator interactions derived from ecological perturbations, 2) an adaptive equilibrium in response to stochastic processes, and 3) the presence of unfavourable reproductive traits (for Ononis masquillierii).
Resumo:
Apple latent infection caused by Neofabraea alba: host-pathogen interaction and disease management Bull’s eye rot (BER) caused by Neofabraea alba is one of the most frequent and damaging latent infection occurring in stored pome fruits worldwide. Fruit infection occurs in the orchard, but disease symptoms appear only 3 months after harvest, during refrigerated storage. In Italy BER is particularly serious for late harvest apple cultivar as ‘Pink Lady™’. The purposes of this thesis were: i) Evaluate the influence of ‘Pink Lady™’ apple primary metabolites in N. alba quiescence ii) Evaluate the influence of pH in five different apple cultivars on BER susceptibility iii) To find out not chemical method to control N. alba infection iv) Identify some fungal volatile compounds in order to use them as N. alba infections markers. Results regarding the role of primary metabolites showed that chlorogenic, quinic and malic acid inhibit N. alba development. The study based on the evaluation of cultivar susceptibility, showed that Granny Smith was the most resistant apple cultivar among the varieties analyzed. Moreover, Granny Smith showed the lowest pH value from harvest until the end of storage, supporting the thesis that ambient pH could be involved in the interaction between N. alba and apple. In order to find out new technologies able to improve lenticel rot management, the application of a non-destructive device for the determination of chlorophyll content was applied. Results showed that fruit with higher chlorophyll content are less susceptible to BER, and molecular analyses comforted this result. Fruits with higher chlorophyll content showed up-regulation of PGIP and HCT, genes involved in plant defence. Through the application of PTR-MS and SPME GC-MS, 25 volatile organic compounds emitted by N. alba were identified. Among them, 16 molecules were identified as potential biomarkers.
Resumo:
The better understanding of mechanisms at the basis of host-pathogen interaction can represent a valid tool to increase productivity and contain economic losses in animal production through the maintenance of intestinal homeostasis. With this project, three preliminary in vitro studies were conducted with the aim of investigating how bioactive compounds could influence mechanisms of host-pathogen interaction in poultry and swine. Different panels of nature identical compounds, medium chain fatty acids, and plant extracts were employed against strains of Salmonella Typhimurium, Brachyspira hyodysenteriae, and Salmonella Enteritidis, respectively. When bacterial field strains were tested, the comparison between natural compounds and antibiotics was examined, with the aim of evaluating the role of the substances in the antibiotic-resistance context. Results demonstrate that bioactive compounds have positive effects on the host, the pathogen, or both in different experimental conditions. Additionally, when compared to antibiotics, bioactive compounds have proven to be valid alternatives to address the phenomenon of antibiotic resistance.