3 resultados para Plant Breeders’ Right
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis is about plant breeding in Early 20th-Century Italy. The stories of the two most prominent Italian plant-breeders of the time, Nazareno Strampelli and Francesco Todaro, are used to explore a fragment of the often-neglected history of Italian agricultural research. While Italy was not at the forefront of agricultural innovation, research programs aimed at varietal innovation did emerge in the country, along with an early diffusion of Mendelism. Using philosophical as well as historical analysis, plant breeding is analysed throughout this thesis as a process: a sequence of steps that lays on practical skills and theoretical assumptions, acting on various elements of production. Systematic plant-breeding programs in Italy started from small individual efforts, attracting more and more resources until they became a crucial part of the fascist regime's infamous agricultural policy. Hybrid varieties developed in the early 20th century survived World War II and are now ancestors of the varieties that are still cultivated today. Despite this relevance, the history of Italian wheat hybrids is today largely forgotten: this thesis is an effort to re-evaluate a part of it. The research did allow previously unknown or neglected facts to emerge, giving a new perspective on the infamous alliance between plant-breeding programs and the fascist regime. This thesis undertakes an analysis of Italian plant-breeding programs as processes. Those processes had a practical as well as a theoretical side, and involved various elements of production. Although a complete history of Italian plant breeding still remains to be written, the Italian case can now be considered along with the other case-studies that other scholars have developed in the history of plant breeding. The hope is that this historical and philosophical analysis will contribute to the on-going effort to understand the history of plants.
Resumo:
The objectives of this PhD research were: i) to evaluate the use of bread making process to increase the content of β-glucans, resistant starch, fructans, dietary fibers and phenolic compounds of kamut khorasan and wheat breads made with flours obtained from kernels at different maturation stage (at milky stage and fully ripe) and ii) to study the impact of whole grains consumption in the human gut. The fermentation and the stages of kernel development or maturation had a great impact on the amount of resistant starch, fructans and β-glucans as well as their interactions resulted highly statistically significant. The amount of fructans was high in kamut bread (2.1g/100g) at the fully ripe stage compared to wheat during industrial fermentation (baker’s yeast). The sourdough increases the content of polyphenols more than industrial fermentation especially in bread made by flour at milky stage. From the analysis of volatile compounds it resulted that the sensors of electronic nose perceived more aromatic compound in kamut products, as well as the SPME-GC-MS, thus we can assume that kamut is more aromatic than wheat, so using it in sourdough process can be a successful approach to improve the bread taste and flavor. The determination of whole grain biormakers such as alkylresorcinols and others using FIE-MS AND GC-tof-MS is a valuable alternative for further metabolic investigations. The decrease of N-acetyl-glucosamine and 3-methyl-hexanedioic acid in kamut faecal samples suggests that kamut can have a role in modulating mucus production/degradation or even gut inflammation. This work gives a new approach to the innovation strategies in bakery functional foods, that can help to choose the right or best combination between stages of kernel maturation-fermentation process and baking temperature.
Resumo:
Nanotechnology promises huge benefits for society and capital invested in this new technology is steadily increasing, therefore there is a growing number of nanotechnology products on the market and inevitably engineered nanomaterials will be released in the atmosphere with potential risks to humans and environment. This study set out to extend the comprehension of the impact of metal (Ag, Co, Ni) and metal oxide (CeO2, Fe3O4, SnO2, TiO2) nanoparticles (NPs) on one of the most important environmental compartments potentially contaminated by NPs, the soil system, through the use of chemical and biological tools. For this purpose experiments were carried out to simulate realistic environmental conditions of wet and dry deposition of NPs, considering ecologically relevant endpoints. In detail, this thesis involved the study of three model systems and the evaluation of related issues: (i) NPs and bare soil, to assess the influence of NPs on the functions of soil microbial communities; (ii) NPs and plants, to evaluate the chronic toxicity and accumulation of NPs in edible tissues; (iii) NPs and invertebrates, to verify the effects of NPs on earthworms and the damaging of their functionality. The study highlighted that NP toxicity is generally influenced by NP core elements and the impact of NPs on organisms is specie-specific; moreover experiments conducted in media closer to real conditions showed a decrease in toxicity with respect to in vitro test or hydroponic tests. However, only a multidisciplinary approach, involving physical, chemical and biological skills, together with the use of advanced techniques, such as X-ray absorption fine structure spectroscopy, could pave the way to draw the right conclusions and accomplish a deeper comprehension of the effects of NPs on soil and soil inhabitants.