4 resultados para Planar piecewise smooth vector fields

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our scope in this thesis is to propose architectures of CNNs in such a way to model the early visual pathway, including the Lateral Geniculate Nucleus and the Horizontal Connectivity of the primary visual cortex. Moreover, we will show how cortically inspired architectures allow to perform contrast perceptual invariance as well as grouping and the emergence of visual percepts. Particularly, the LGN is modeled with a first layer l0 containing a single filter Ψ0 that pre-filters the image I. Since the RPs of the LGN cells can be modeled as a LoG, we expect to obtain a radially symmetric filter with a similar shape; to this end, we prove the rotational invariance of Ψ0 and we study the influence of this filter to the subsequent layer. Indeed, we compare the statistic distribution of the filters in the second layer l1 of our architecture with the statistic distribution of the RPs of V1 cells of a macaque. Then, we model the horizontal connectivity of V1 implementing a transition kernel K1 to the layer l1. In this setting, we study the vector fields and the association fields induced by the connectivity kernel K1. To this end, we first approximate the filters bank in l1 with a Gabor function and use the parameters just found to re-parameterize the kernel. Thanks to this step, the kernel is now re-parameterized into a sub-Riemmanian space R2 × S1. Now we are able to compare the vector and association fields induced by K1 with the models of the horizontal connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral dissertation presents a new method to asses the influence of clearancein the kinematic pairs on the configuration of planar and spatial mechanisms. The subject has been widely investigated in both past and present scientific literature, and is approached in different ways: a static/kinetostatic way, which looks for the clearance take-up due to the external loads on the mechanism; a probabilistic way, which expresses clearance-due displacements using probability density functions; a dynamic way, which evaluates dynamic effects like the actual forces in the pairs caused by impacts, or the consequent vibrations. This dissertation presents a new method to approach the problem of clearance. The problem is studied from a purely kinematic perspective. With reference to a given mechanism configuration, the pose (position and orientation) error of the mechanism link of interest is expressed as a vector function of the degrees of freedom introduced in each pair by clearance: the presence of clearance in a kinematic pair, in facts, causes the actual pair to have more degrees of freedom than the theoretical clearance-free one. The clearance-due degrees of freedom are bounded by the pair geometry. A proper modelling of clearance-affected pairs allows expressing such bounding through analytical functions. It is then possible to study the problem as a maximization problem, where a continuous function (the pose error of the link of interest) subject to some constraints (the analytical functions bounding clearance- due degrees of freedom) has to be maximize. Revolute, prismatic, cylindrical, and spherical clearance-affected pairs have been analytically modelled; with reference to mechanisms involving such pairs, the solution to the maximization problem has been obtained in a closed form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultra-relativistic heavy ions generate strong electromagnetic fields which offer the possibility to study γ-γ and γ-nucleus processes at the LHC in the so called ultra-peripheral collisions (UPC). The photoproduction of J/ψ vector mesons in UPC is sensitive to the gluon distribution of the interacting nuclei. In this thesis the study of coherent and incoherent J/ψ production in Pb-Pb collisions at √sNN = 2.76 TeV is described. The J/ψ has been measured via its leptonic decay in the rapidity range -0.9 < y < 0.9. The cross section for coherent and incoherent J/ψ are given. The results are compared to theoretical models for J/ψ production and the coherent cross section is found to be in good agreement with those models which include nuclear gluon shadowing consistent with EPS09 parametrization. In addition the cross section for the process γ γ→ e+e− has been measured and found to be in agreement with the STARLIGHT Monte Carlo predictions. The analysis has been published by the ALICE Collaboration in the European Physical Journal C, with one of its main plot depicted on the cover-front of the November 2013 issue.