3 resultados para Place management
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Different tools have been used to set up and adopt the model for the fulfillment of the objective of this research. 1. The Model The base model that has been used is the Analytical Hierarchy Process (AHP) adapted with the aim to perform a Benefit Cost Analysis. The AHP developed by Thomas Saaty is a multicriteria decision - making technique which decomposes a complex problem into a hierarchy. It is used to derive ratio scales from both discreet and continuous paired comparisons in multilevel hierarchic structures. These comparisons may be taken from actual measurements or from a fundamental scale that reflects the relative strength of preferences and feelings. 2. Tools and methods 2.1. The Expert Choice Software The software Expert Choice is a tool that allows each operator to easily implement the AHP model in every stage of the problem. 2.2. Personal Interviews to the farms For this research, the farms of the region Emilia Romagna certified EMAS have been detected. Information has been given by EMAS center in Wien. Personal interviews have been carried out to each farm in order to have a complete and realistic judgment of each criteria of the hierarchy. 2.3. Questionnaire A supporting questionnaire has also been delivered and used for the interviews . 3. Elaboration of the data After data collection, the data elaboration has taken place. The software support Expert Choice has been used . 4. Results of the Analysis The result of the figures above (vedere altro documento) gives a series of numbers which are fractions of the unit. This has to be interpreted as the relative contribution of each element to the fulfillment of the relative objective. So calculating the Benefits/costs ratio for each alternative the following will be obtained: Alternative One: Implement EMAS Benefits ratio: 0, 877 Costs ratio: 0, 815 Benfit/Cost ratio: 0,877/0,815=1,08 Alternative Two: Not Implement EMAS Benefits ratio: 0,123 Costs ration: 0,185 Benefit/Cost ratio: 0,123/0,185=0,66 As stated above, the alternative with the highest ratio will be the best solution for the organization. This means that the research carried out and the model implemented suggests that EMAS adoption in the agricultural sector is the best alternative. It has to be noted that the ratio is 1,08 which is a relatively low positive value. This shows the fragility of this conclusion and suggests a careful exam of the benefits and costs for each farm before adopting the scheme. On the other part, the result needs to be taken in consideration by the policy makers in order to enhance their intervention regarding the scheme adoption on the agricultural sector. According to the AHP elaboration of judgments we have the following main considerations on Benefits: - Legal compliance seems to be the most important benefit for the agricultural sector since its rank is 0,471 - The next two most important benefits are Improved internal organization (ranking 0,230) followed by Competitive advantage (ranking 0, 221) mostly due to the sub-element Improved image (ranking 0,743) Finally, even though Incentives are not ranked among the most important elements, the financial ones seem to have been decisive on the decision making process. According to the AHP elaboration of judgments we have the following main considerations on Costs: - External costs seem to be largely more important than the internal ones (ranking 0, 857 over 0,143) suggesting that Emas costs over consultancy and verification remain the biggest obstacle. - The implementation of the EMS is the most challenging element regarding the internal costs (ranking 0,750).
Resumo:
Proper hazard identification has become progressively more difficult to achieve, as witnessed by several major accidents that took place in Europe, such as the Ammonium Nitrate explosion at Toulouse (2001) and the vapour cloud explosion at Buncefield (2005), whose accident scenarios were not considered by their site safety case. Furthermore, the rapid renewal in the industrial technology has brought about the need to upgrade hazard identification methodologies. Accident scenarios of emerging technologies, which are not still properly identified, may remain unidentified until they take place for the first time. The consideration of atypical scenarios deviating from normal expectations of unwanted events or worst case reference scenarios is thus extremely challenging. A specific method named Dynamic Procedure for Atypical Scenarios Identification (DyPASI) was developed as a complementary tool to bow-tie identification techniques. The main aim of the methodology is to provide an easier but comprehensive hazard identification of the industrial process analysed, by systematizing information from early signals of risk related to past events, near misses and inherent studies. DyPASI was validated on the two examples of new and emerging technologies: Liquefied Natural Gas regasification and Carbon Capture and Storage. The study broadened the knowledge on the related emerging risks and, at the same time, demonstrated that DyPASI is a valuable tool to obtain a complete and updated overview of potential hazards. Moreover, in order to tackle underlying accident causes of atypical events, three methods for the development of early warning indicators were assessed: the Resilience-based Early Warning Indicator (REWI) method, the Dual Assurance method and the Emerging Risk Key Performance Indicator method. REWI was found to be the most complementary and effective of the three, demonstrating that its synergy with DyPASI would be an adequate strategy to improve hazard identification methodologies towards the capture of atypical accident scenarios.
Resumo:
Government policies play a critical role in influencing market conditions, institutions and overall agricultural productivity. The thesis therefore looks into the history of agriculture development in India. Taking a political economy perspective, the historical account looks at significant institutional and technological innovations carried out in pre- independent and post independent India. It further focuses on the Green Revolution in Asia, as forty years after; the agricultural community still faces the task of addressing recurrent issue of food security amidst emerging challenges, such as climate change. It examines the Green Revolution that took place in India during the late 1960s and 70s in a historical perspective, identifying two factors of institutional change and political leadership. Climate change in agriculture development has become a major concern to farmers, researchers and policy makers alike. However, there is little knowledge on the farmers’ perception to climate change and to the extent they coincide with actual climatic data. Using a qualitative approach,it looks into the perceptions of the farmers in four villages in the states of Maharashtra and Andhra Pradesh. While exploring the adaptation strategies, the chapter looks into the dynamics of who can afford a particular technology and who cannot and what leads to a particular adaptation decision thus determining the adaptive capacity in water management. The final section looks into the devolution of authority for natural resource management to local user groups through the Water Users’ Associations as an important approach to overcome the long-standing challenges of centralized state bureaucracies in India. It addresses the knowledge gap of why some local user groups are able to overcome governance challenges such as elite capture, while others-that work under the design principles developed by Elinor Ostrom. It draws conclusions on how local leadership, can be promoted to facilitate participatory irrigation management.