3 resultados para Picard-Krylov
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.
Resumo:
In the present thesis, we discuss the main notions of an axiomatic approach for an invariant Harnack inequality. This procedure, originated from techniques for fully nonlinear elliptic operators, has been developed by Di Fazio, Gutiérrez, and Lanconelli in the general settings of doubling Hölder quasi-metric spaces. The main tools of the approach are the so-called double ball property and critical density property: the validity of these properties implies an invariant Harnack inequality. We are mainly interested in the horizontally elliptic operators, i.e. some second order linear degenerate-elliptic operators which are elliptic with respect to the horizontal directions of a Carnot group. An invariant Harnack inequality of Krylov-Safonov type is still an open problem in this context. In the thesis we show how the double ball property is related to the solvability of a kind of exterior Dirichlet problem for these operators. More precisely, it is a consequence of the existence of some suitable interior barrier functions of Bouligand-type. By following these ideas, we prove the double ball property for a generic step two Carnot group. Regarding the critical density, we generalize to the setting of H-type groups some arguments by Gutiérrez and Tournier for the Heisenberg group. We recognize that the critical density holds true in these peculiar contexts by assuming a Cordes-Landis type condition for the coefficient matrix of the operator. By the axiomatic approach, we thus prove an invariant Harnack inequality in H-type groups which is uniform in the class of the coefficient matrices with prescribed bounds for the eigenvalues and satisfying such a Cordes-Landis condition.
Resumo:
Studying moduli spaces of semistable Higgs bundles (E, \phi) of rank n on a smooth curve C, a key role is played by the spectral curve X (Hitchin), because an important result by Beauville-Narasimhan-Ramanan allows us to study isomorphism classes of such Higgs bundles in terms of isomorphism classes of rank-1 torsion-free sheaves on X. This way, the generic fibre of the Hitchin map, which associates to any semistable Higgs bundle the coefficients of the characteristic polynomial of \phi, is isomorphic to the Jacobian of X. Focusing on rank-2 Higgs data, this construction was extended by Barik to the case in which the curve C is reducible, one-nodal, having two smooth components. Such curve is called of compact type because its Picard group is compact. In this work, we describe and clarify the main points of the construction by Barik and we give examples, especially concerning generic fibres of the Hitchin map. Referring to Hausel-Pauly, we consider the case of SL(2,C)-Higgs bundles on a smooth base curve, which are such that the generic fibre of the Hitchin map is a subvariety of the Jacobian of X, the Prym variety. We recall the description of special loci, called endoscopic loci, such that the associated Prym variety is not connected. Then, letting G be an affine reductive group having underlying Lie algebra so(4,C), we consider G-Higgs bundles on a smooth base curve. Starting from the construction by Bradlow-Schaposnik, we discuss the associated endoscopic loci. By adapting these studies to a one-nodal base curve of compact type, we describe the fibre of the SL(2,C)-Hitchin map and of the G-Hitchin map, together with endoscopic loci. In the Appendix, we give an interpretation of generic spectral curves in terms of families of double covers.