5 resultados para Physical factors

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBIETTIVI: Per esplorare il contributo dei fattori di rischio biomeccanico, ripetitività (hand activity level – HAL) e forza manuale (peak force - PF), nell’insorgenza della sindrome del tunnel carpale (STC), abbiamo studiato un’ampia coorte di lavoratori dell’industria, utilizzando come riferimento il valore limite di soglia (TLV©) dell’American Conference of Governmental Industrial Hygienists (ACGIH). METODI: La coorte è stata osservata dal 2000 al 2011. Abbiamo classificato l’esposizione professionale rispetto al limite di azione (AL) e al TLV dell’ACGIH in: “accettabile” (sotto AL), “intermedia” (tra AL e TLV) e “inaccettabile” (sopra TLV). Abbiamo considerato due definizioni di caso: 1) sintomi di STC; 2) sintomi e positività allo studio di conduzione nervosa (SCN). Abbiamo applicato modelli di regressione di Poisson aggiustati per sesso, età, indice di massa corporea e presenza di patologie predisponenti la malattia. RISULTATI: Nell’intera coorte (1710 lavoratori) abbiamo trovato un tasso di incidenza (IR) di sintomi di STC di 4.1 per 100 anni-persona; un IR di STC confermata dallo SCN di 1.3 per 100 anni-persona. Gli esposti “sopra TLV” presentano un rischio di sviluppare sintomi di STC di 1.76 rispetto agli esposti “sotto AL”. Un andamento simile è emerso per la seconda definizione di caso [incidence rate ratios (IRR) “sopra TLV”, 1.37 (intervallo di confidenza al 95% (IC95%) 0.84–2.23)]. Gli esposti a “carico intermedio” risultano a maggior rischio per la STC [IRR per i sintomi, 3.31 (IC95% 2.39–4.59); IRR per sintomi e SCN positivo, 2.56 (IC95% 1.47–4.43)]. Abbiamo osservato una maggior forza di associazione tra HAL e la STC. CONCLUSIONI: Abbiamo trovato un aumento di rischio di sviluppare la STC all’aumentare del carico biomeccanico: l’aumento di rischio osservato già per gli esposti a “carico intermedio” suggerisce che gli attuali valori limite potrebbero non essere sufficientemente protettivi per alcuni lavoratori. Interventi di prevenzione vanno orientati verso attività manuali ripetitive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stabilization of nanoparticles against their irreversible particle aggregation and oxidation reactions. is a requirement for further advancement in nanoparticle science and technology. For this reason the research aim on this topic focuses on the synthesis of various metal nanoparticles protected with monolayers containing different reactive head groups and functional tail groups. In this work cuprous bromide nanocrystals haave been synthetized with a diameter of about 20 nanometers according to a new sybthetic method adding dropwise ascorbic acid to a water solution of lithium bromide and cupric chloride under continuous stirring and nitrogen flux. Butane thiolate Cu protected nanoparticles have been synthetized according to three different syntesys methods. Their morphologies appear related to the physicochemical conditions during the synthesis and to the dispersing medium used to prepare the sample. Synthesis method II allows to obtain stable nanoparticles of 1-2 nm in size both isolated and forming clusters. Nanoparticle cluster formation was enhanced as water was used as dispersing medium probably due to the idrophobic nature of the butanethiolate layers coating the nanoparticle surface. Synthesis methods I and III lead to large unstable spherical nanoparticles with size ranging between 20 to 50 nm. These nanoparticles appeared in the TEM micrograph with the same morphology independently on the dispersing medium used in the sample preparation. The stability and dimensions of the copper nanoparticles appear inversely related. Using the same methods above described for the butanethiolate protected copper nanoparticles 4-methylbenzenethiol protected copper nanoparticles have been prepared. Diffractometric and spectroscopic data reveal that decomposition processes didn’t occur in both the 4-methylbenzenethiol copper protected nanoparticles precipitates from formic acid and from water in a period of time six month long. Se anticarcinogenic effects by multiple mechanisms have been extensively investigated and documented and Se is defined a genuine nutritional cancer-protecting element and a significant protective effect of Se against major forms of cancer. Furthermore phloroglucinol was found to possess cytoprotective effects against oxidative stress, thanks to reactive oxygen species (ROS) which are associated with cells and tissue damages and are the contributing factors for inflammation, aging, cancer, arteriosclerosis, hypertension and diabetes. The goal of our work has been to set up a new method to synthesize in mild conditions amorphous Se nanopaticles surface capped with phloroglucinol, which is used during synthesis as reducing agent to obtain stable Se nanoparticles in ethanol, performing the synergies offered by the specific anticarcinogenic properties of Se and the antioxiding ones of phloroalucinol. We have synthesized selenium nanoparticles protected by phenolic molecules chemically bonded to their surface. The phenol molecules coating the nanoparticles surfaces form low ordered arrays as can be seen from the wider shape of the absorptions in the FT-IR spectrum with respect to those appearing in that of crystalline phenol. On the other hand, metallic nanoparticles with unique optical properties, facile surface chemistry and appropriate size scale are generating much enthusiasm in nanomedicine. In fact Au nanoparticles has immense potential for both cancer diagnosis and therapy. Especially Au nanoparticles efficiently convert the strongly adsorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. According to the about, metal nanoparticles-HA nanocrystals composites should have tremendous potential in novel methods for therapy of cancer. 11 mercaptoundecanoic surface protected Au4Ag1 nanoparticles adsorbed on nanometric apathyte crystals we have successfully prepared like an anticancer nanoparticles deliver system utilizing biomimetic hydroxyapatyte nanocrystals as deliver agents. Furthermore natural chrysotile, formed by densely packed bundles of multiwalled hollow nanotubes, is a mineral very suitable for nanowires preparation when their inner nanometer-sized cavity is filled with a proper material. Bundles of chrysotile nanotubes can then behave as host systems, where their large interchannel separation is actually expected to prevent the interaction between individual guest metallic nanoparticles and act as a confining barrier. Chrysotile nanotubes have been filled with molten metals such as Hg, Pb, Sn, semimetals, Bi, Te, Se, and with semiconductor materials such as InSb, CdSe, GaAs, and InP using both high-pressure techniques and metal-organic chemical vapor deposition. Under hydrothermal conditions chrysotile nanocrystals have been synthesized as a single phase and can be utilized as a very suitable for nanowires preparation filling their inner nanometer-sized cavity with metallic nanoparticles. In this research work we have synthesized and characterized Stoichiometric synthetic chrysotile nanotubes have been partially filled with bi and monometallic highly monodispersed nanoparticles with diameters ranging from 1,7 to 5,5 nm depending on the core composition (Au, Au4Ag1, Au1Ag4, Ag). In the case of 4 methylbenzenethiol protected silver nanoparticles, the filling was carried out by convection and capillarity effect at room temperature and pressure using a suitable organic solvent. We have obtained new interesting nanowires constituted of metallic nanoparticles filled in inorganic nanotubes with a inner cavity of 7 nm and an isolating wall with a thick ranging from 7 to 21 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Delirium is defined as an acute disorder of attention and cognition. Delirium is common in hospitalized elderly patient and is associated with increased morbidity, length of stay and patient care costs. Although Delirium can develop at any time during hospitalization, it typically presents early in the post-operative period (Post-Operative Delirium, POD) in the surgery context. The molecular mechanism and possible genetics basis of POD onset are not known, as well as all the risk factors are not completely defined. Our hypothesis is that genetic risk factor involving the inflammatory response could have possible effects on the immunoneuroendocrine system. Moreover, our previous data (inflamm-aging) suggest that aging is associated with an increase of inflammatory status, favouring age-related diseases such as neurodegenerative diseases, frailty, depression among other. Some pro-inflammatory or anti-inflammatory cytokines, seem to play a crucial role in increasing the inflammatory status and in the communication and regulation of immunoneuroendocrine system. Objective: this study evaluated the incidence of POD in elderly patients undergoing general surgery, clinical/physical and psychological risk factors of POD insurgency and investigated inflammatory and genetic risk factors. Moreover, this study evaluated the consequence of POD in terms of institutionalization, development of permanent cognitive dysfunction or dementia and mortality Methods: patients aged over 65 admitted for surgery at the Urgency Unit of S.Orsola-Malpighi Hospital were eligible for this case–control study. Risk factors significantly associated with POD in univariate analysis were entered into multivariate analysis to establish those independently associated with POD. Preoperative plasma level of 9 inflammatory markers were measured in 42 control subjects and 43 subjects who developed POD. Functional polymorphisms of IL-1 α , IL-2, IL-6, IL-8, IL-10 and TNF-alpha cytokine genes were determined in 176 control subjects and 27 POD subjects. Results: A total of 351 patients were enrolled in the study. The incidence of POD was 13•2 %. Independent variables associated with POD were: age, co-morbidity, preoperative cognitive impairment, glucose abnormalities. Median length of hospital stay was 21 days for patients with POD versus 8 days for control patients (P < 0•001). The hospital mortality rate was 19 and 8•4 % respectively (P = 0•021) and mortality rate after 1 year was also higher in POD (P= 0.0001). The baseline of IL-6 concentration was higher in POD patients than patients without POD, whereas IL-2 was lower in POD patients compared to patients without POD. In a multivariate analysis only IL-6 remained associated with POD. Moreover IL-6, IL-8 and IL-2 are associated with co-morbidity, intra-hospital mortality, compromised functional status and emergency admission. No significant differences in genotype distribution were found between POD subjects and controls for any SNP analyzed in this study. Conclusion: In this study we found older age, comorbidity, cognitive impairment, glucose abnormalities and baseline of IL-6 as independent risk factors for the development of POD. IL-6 could be proposed as marker of a trait that is associated with an increased risk of delirium; i.e. raised premorbid IL-6 level predict for the development of delirium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.