3 resultados para Photochemical reactors

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the building blocks chosen to construct crystals. The focus is on the control exerted by shape on the organization of sandwich cations such as cobalticinium, decamethylcobalticinium and bisbenzenchromium(I) and on the aggregation of monoanions all containing carboxylic and carboxylate groups, into 0-D, 1-D, 2-D and 3-D networks. Reactions conducted in multi-component molecular assemblies or co-crystals have been recognized as a way to control reactivity in the solid state. The [2+2] photodimerization of olefins is a successful demonstration of how templated solid state synthesis can efficiently synthesize unique materials with remarkable stereoselectivity and under environment-friendly conditions. A demonstration of this synthetic strategy is given in chapter 3. The combination of various types of intermolecular linkages, leading to formation of high order aggregation and crystalline materials or to a random aggregation resulting in an amorphous precipitate, may not go to completeness. In such rare cases an aggregation process intermediate between crystalline and amorphous materials is observed, resulting in the formation of a gel, i.e. a viscoelastic solid-like or liquid-like material. In chapter 4 design of new Low Molecular Weight Gelators is presented. Aspects such as the relationships between molecular structure, crystal packing and gelation properties and the application of this kind of gels as a medium for crystal growth of organic molecules, such as APIs, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents first a study of the national and international laws in the fields of safety, security and safeguards. The international treaties and the recommendations issued by the IAEA as well as the national regulations in force in France, the United States and Italy are analyzed. As a result of this, a comparison among them is presented. Given the interest of the Japan Atomic Energy Agency for the aspects of criminal penalties and monetary, also the Japanese case is analyzed. The main part of this work was held at the JAEA in the field of proliferation resistance (PR) and physical protection (PP) of a GEN IV sodium fast reactor. For this purpose the design of the system is completed and the PR & PP methodology is applied to obtain data usable by designers for the improvement of the system itself. Due to the presence of sensitive data, not all the details can be disclosed. The reactor site of a hypothetical and commercial sodium-cooled fast neutron nuclear reactor system (SFR) is used as the target NES for the application of the methodology. The methodology is applied to all the PR and PP scenarios: diversion, misuse and breakout; theft and sabotage. The methodology is applied to the SFR to check if this system meets the target of PR and PP as described in the GIF goal; secondly, a comparison between the SFR and a LWR is performed to evaluate if and how it would be possible to improve the PR&PP of the SFR. The comparison is implemented according to the example development target: achieving PR&PP similar or superior to domestic and international ALWR. Three main actions were performed: implement the evaluation methodology; characterize the PR&PP for the nuclear energy system; identify recommendations for system designers through the comparison.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the Three Mile Island Unit 2 (TMI-2), accident in 1979 which led to the meltdown of about one half of the reactor core and to limited releases of radioactive materials to the environment, an important international effort has been made on severe accident research. The present work aims to investigate the behaviour of a Small Modular Reactor during severe accident conditions. In order to perform these analyses, a SMR has been studied for the European reference severe accident analysis code ASTEC, developed by IRSN and GRS. In the thesis will be described in detail the IRIS Small Modular Reactor; the reference reactor chosen to develop the ASTEC input deck. The IRIS model was developed in the framework of a research collaboration with the IRSN development team. In the thesis will be described systematically the creation of the ASTEC IRIS input deck: the nodalization scheme adopted, the solution used to simulate the passive safety systems and the strong interaction between the reactor vessel and the containment. The ASTEC SMR model will be tested against the RELAP-GOTHIC coupled code model, with respect to a Design Basis Accident, to evaluate the capability of the ASTEC code on reproducing correctly the behaviour of the nuclear system. Once the model has been validated, a severe accident scenario will be simulated and the obtained results along with the nuclear system response will be analysed.