12 resultados para Phase change material (PCM)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. To resolve this issue the industry is improving existing technologies such as Flash and exploring new ones. Among those new technologies is the Phase Change Memory (PCM), which overcomes some of the shortcomings of the Flash such as durability and scalability. This alternative non-volatile memory technology, which uses resistance contrast in phase-change materials, offers more density relative to DRAM, and can help to increase main memory capacity of future systems while remaining within the cost and power constraints. Chalcogenide materials can suitably be exploited for manufacturing phase-change memory devices. Charge transport in amorphous chalcogenide-GST used for memory devices is modeled using two contributions: hopping of trapped electrons and motion of band electrons in extended states. Crystalline GST exhibits an almost Ohmic I(V) curve. In contrast amorphous GST shows a high resistance at low biases while, above a threshold voltage, a transition takes place from a highly resistive to a conductive state, characterized by a negative differential-resistance behavior. A clear and complete understanding of the threshold behavior of the amorphous phase is fundamental for exploiting such materials in the fabrication of innovative nonvolatile memories. The type of feedback that produces the snapback phenomenon is described as a filamentation in energy that is controlled by electron–electron interactions between trapped electrons and band electrons. The model thus derived is implemented within a state-of-the-art simulator. An analytical version of the model is also derived and is useful for discussing the snapback behavior and the scaling properties of the device.
Resumo:
Chalcogenides are chemical compounds with at least one of the following three chemical elements: Sulfur (S), Selenium (Sn), and Tellurium (Te). As opposed to other materials, chalcogenide atomic arrangement can quickly and reversibly inter-change between crystalline, amorphous and liquid phases. Therefore they are also called phase change materials. As a results, chalcogenide thermal, optical, structural, electronic, electrical properties change pronouncedly and significantly with the phase they are in, leading to a host of different applications in different areas. The noticeable optical reflectivity difference between crystalline and amorphous phases has allowed optical storage devices to be made. Their very high thermal conductivity and heat fusion provided remarkable benefits in the frame of thermal energy storage for heating and cooling in residential and commercial buildings. The outstanding resistivity difference between crystalline and amorphous phases led to a significant improvement of solid state storage devices from the power consumption to the re-writability to say nothing of the shrinkability. This work focuses on a better understanding from a simulative stand point of the electronic, vibrational and optical properties for the crystalline phases (hexagonal and faced-centered cubic). The electronic properties are calculated implementing the density functional theory combined with pseudo-potentials, plane waves and the local density approximation. The phonon properties are computed using the density functional perturbation theory. The phonon dispersion and spectrum are calculated using the density functional perturbation theory. As it relates to the optical constants, the real part dielectric function is calculated through the Drude-Lorentz expression. The imaginary part results from the real part through the Kramers-Kronig transformation. The refractive index, the extinctive and absorption coefficients are analytically calculated from the dielectric function. The transmission and reflection coefficients are calculated using the Fresnel equations. All calculated optical constants compare well the experimental ones.
Resumo:
Several CFCC (Continuous Fiber Composite Ceramics) production processes were tested, concluding that PIP (Polymer Impregnation, or Infiltration, Pyrolysis) and CBC (Chemically Bonded Ceramics) based procedures have interesting potential applications in the construction and transportation fields, thanks to low costs to get potentially useful thermomechanical performances. Among the different processes considered during the Doctorate (from the synthesis of new preceramic polymers, to the PIP production of SiC / SiC composites) the more promising results came from the PIP process with poly-siloxanes on basalt fabrics preforms. Low processing time and costs, together with fairly good thermomechanical properties were demonstrated, even after only one or two PIP steps in nitrogen flow. In alternative, pyrolysis in vacuum was also tested, a procedure still not discussed in literature, but which could originate an interesting reduction of production costs, with only a moderate detrimental effect on the mechanical properties. The resulting CFCC is a basalt / SiCO composite that can be applied for continuous operation up to 600°C, also in oxidant environment, as TG and XRD demonstrated. The failure upon loading is generally pseudo-plastic, being interlaminar delamination the most probable rupture mechanism. . The strength depends on several different factors (microstructure, polymer curing and subsequent ceramic phase evolution, fiber pull-out, fiber strength, fiber percentage) and can only be optimized empirically. In order to be open minded in selecting the best technology, also CBC (Chemically Bonded Ceramics) matrixes were considered during this Doctorate, making some preliminary investigations on fire-resistant phosphate cements. Our results on a commercial product evidenced some interesting thermomechanical capabilities, even after thermal treatments. However the experiments showed also phase change and possible cracking and deformations even on slow drying (at 130°C) and easy rehydration upon exposure to environmental humidity.
Resumo:
This volume is a collection of the work done in a three years-lasting PhD, focused in the analysis of Central and Southern Adriatic marine sediments, deriving from the collection of a borehole and many cores, achieved thanks to the good seismic-stratigraphic knowledge of the study area. The work was made out within European projects EC-EURODELTA (coordinated by Fabio Trincardi, ISMAR-CNR), EC-EUROSTRATAFORM (coordinated by Phil P. E. Weaver, NOC, UK), and PROMESS1 (coordinated by Serge Bernè, IFREMER, France). The analysed sedimentary successions presented highly expanded stratigraphic intervals, particularly for the last 400 kyr, 60 kyr and 6 kyr BP. These three different time-intervals resulted in a tri-partition of the PhD thesis. The study consisted of the analysis of planktic and benthic foraminifers’ assemblages (more than 560 samples analysed), as well as in preparing the material for oxygen and carbon stable isotope analyses, and interpreting and discussing the obtained dataset. The chronologic framework of the last 400 kyr was achieved for borehole PRAD1-2 (within the work-package WP6 of PROMESS1 project), collected in 186.5 m water depth. The proposed chronology derives from a multi-disciplinary approach, consisting of the integration of numerous and independent proxies, some of which analysed by other specialists within the project. The final framework based on: micropaleontology (calcareous nannofossils and foraminifers’ bioevents), climatic cyclicity (foraminifers’ assemblages), geochemistry (oxygen stable isotope, made out on planktic and benthic records), paleomagnetism, radiometric ages (14C AMS), teprhochronology, identification of sapropel-equivalent levels (Se). It’s worth to note the good consistency between the oxygen stable isotope curve obtained for borehole PRAD1-2 and other deeper Mediterranean records. The studied proxies allowed the recognition of all the isotopic intervals from MIS10 to MIS1 in PRAD1-2 record, and the base of the borehole has been ascribed to the early MIS11. Glacial and interglacial intervals identified in the Central Adriatic record have been analysed in detail for the paleo-environmental reconstruction, as well. For instance, glacial stages MIS6, MIS8 and MIS10 present peculiar foraminifers’ assemblages, composed by benthic species typical of polar regions and no longer living in the Central Adriatic nowadays. Moreover, a deepening trend in the paleo-bathymetry during glacial intervals was observed, from MIS10 (inner-shelf environment) to MIS4 (mid-shelf environment).Ten sapropel-equivalent levels have been recognised in PRAD1-2 Central Adriatic record. They showed different planktic foraminifers’ assemblages, which allowed the first distinction of events occurred during warm-climate (Se5, Se7), cold-climate (Se4, Se6 and Se8) and temperate-intermediate-climate (Se1, Se3, Se9, Se’, Se10) conditions, consistently with literature. Cold-climate sapropel equivalents are characterised by the absence of an oligotrophic phase, whereas warm-temeprate-climate sapropel equivalents present both the oligotrophic and the eutrophic phases (except for Se1). Sea floor conditions vary, according to benthic foraminifers’ assemblages, from relatively well oxygenated (Se1, Se3), to dysoxic (Se9, Se’, Se10), to highly dysoxic (Se4, Se6, Se8) to events during which benthic foraminifers are absent (Se5, Se7). These two latter levels are also characterised by the lamination of the sediment, feature never observed in literature in such shallow records. The enhanced stratification of the water column during the events Se8, Se7, Se6, Se5, Se4, and the concurring strong dilution of shallow water, pointed out by the isotope record, lead to the hypothesis of a period of intense precipitation in the Central Adriatic region, possibly due to a northward shift of the African Monsoon. Finally, the expression of Central Adriatic PRAD1-2 Se5 equivalent was compared with the same event, as registered in other Eastern Mediterranean areas. The sequence of substantially the same planktic foraminifers’ bioevents has been consistently recognised, indicating a similar evolution of the water column all over the Eastern Mediterranean; yet, the synchronism of these events cannot be demonstrated. A high resolution analysis of late Holocene (last 6000 years BP) climate change was carried out for the Adriatic area, through the recognition of planktic and benthic foraminifers’ bioevents. In particular, peaks of planktic Globigerinoides sacculifer (four during the last 5500 years BP in the most expanded core) have been interpreted, based on the ecological requirements of this species, as warm-climate, arid intervals, correspondent to periods of relative climatic optimum, such as, for instance, the Medieval Warm Period, the Roman Age, the Late Bronze Age and the Copper Age. Consequently, the minima in the abundance of this biomarker could correspond to relatively cooler and more rainy periods. These conclusions are in good agreement with the isotopic and the pollen data. The Last Occurrence (LO) of G. sacculifer has been dated in this work at an average age of 550 years BP, and it is the best bioevent approximating the base of the Little Ice Age in the Adriatic. Recent literature reports the same bioevent in the Levantine Basin, showing a rather consistent age. Therefore, the LO of G. sacculifer has the potential to be extended to all the Eastern Mediterranean. Within the Little Ice Age, benthic foraminifer V. complanata shows two distinct peaks in the shallower Adriatic cores analysed, collected hundred kilometres apart, inside the mud belt environment. Based on the ecological requirements of this species, these two peaks have been interpreted as the more intense (cold and rainy) oscillations inside the LIA. The chronologic framework of the analysed cores is robust, being based on several range-finding 14C AMS ages, on estimates of the secular variation of the magnetic field, on geochemical estimates of the activity depth of 210Pb short-lived radionuclide (for the core-top ages), and is in good agreement with tephrochronologic, pollen and foraminiferal data. The intra-holocenic climate oscillations find out in the Adriatic have been compared with those pointed out in literature from other records of the Northern Hemisphere, and the chronologic constraint seems quite good. Finally, the sedimentary successions analysed allowed the review and the update of the foraminifers’ ecobiostratigraphy available from literature for the Adriatic region, thanks to the achievement of 16 ecobiozones for the last 60 kyr BP. Some bioevents are restricted to the Central Adriatic (for instance the LO of benthic Hyalinea balthica , approximating the MIS3/MIS2 boundary), others occur all over the Adriatic basin (for instance the LO of planktic Globorotalia inflata during MIS3, individuating Dansgaard-Oeschger cycle 8 (Denekamp)).
Resumo:
In the framework of developing defect-based life models, in which breakdown is explicitly associated with partial discharge (PD)-induced damage growth from a defect, ageing tests and PD measurements were carried out in the lab on polyethylene (PE) layered specimens containing artificial cavities. PD activity was monitored continuously during aging. A quasi-deterministic series of stages can be observed in the behavior of the main PD parameters (i.e. discharge repetition rate and amplitude). Phase-resolved PD patterns at various ageing stages were reproduced by numerical simulation which is based on a physical discharge model devoid of adaptive parameters. The evolution of the simulation parameters provides insight into the physical-chemical changes taking place at the dielectric/cavity interface during the aging process. PD activity shows similar time behavior under constant cavity gas volume and constant cavity gas pressure conditions, suggesting that the variation of PD parameters may not be attributed to the variation of the gas pressure. Brownish PD byproducts, consisting of oxygen containing moieties, and degradation pits were found at the dielectric/cavity interface. It is speculated that the change of PD activity is related to the composition of the cavity gas, as well as to the properties of dielectric/cavity interface.
Resumo:
This research investigated someone of the main problems connected to the application of Tissue Engineering in the prosthetic field, in particular about the characterization of the scaffolding materials and biomimetic strategies adopted in order to promote the implant integration. The spectroscopic and thermal analysis techniques were usefully applied to characterize the chemico-physical properties of the materials such as – crystallinity; – relative composition in case of composite materials; – Structure and conformation of polymeric and peptidic chains; – mechanism and degradation rate; – Intramolecular and intermolecular interactions (hydrogen bonds, aliphatic interactions). This kind of information are of great importance in the comprehension of the interactions that scaffold undergoes when it is in contact with biological tissues; this information are fundamental to predict biodegradation mechanisms and to understand how chemico-physical properties change during the degradation process. In order to fully characterize biomaterials, this findings must be integrated by information relative to mechanical aspects and in vitro and in vivo behavior thanks to collaborations with biomedical engineers and biologists. This study was focussed on three different systems that correspond to three different strategies adopted in Tissue Engineering: biomimetic replica of fibrous 3-D structure of extracellular matrix (PCL-PLLA), incorporation of an apatitic phase similar to bone inorganic phase to promote biomineralization (PCL-HA), surface modification with synthetic oligopeptides that elicit the interaction with osteoblasts. The characterization of the PCL-PLLA composite underlined that the degradation started along PLLA fibres, which are more hydrophylic, and they serve as a guide for tissue regeneration. Moreover it was found that some cellular lines are more active in the colonization of the scaffold. In the PCL-HA composite, the weight ratio between the polymeric and the inorganic phase plays an essential role both in the degradation process and in the biomineralization of the material. The study of self-assembling peptides allowed to clarify the influence of primary structure on intermolecular and intermolecular interactions, that lead to the formation of the secondary structure and it was possible to find a new class of oligopeptides useful to functionalize materials surface. Among the analytical techniques used in this study, Raman vibrational spectroscopy played a major role, being non-destructive and non-invasive, two properties that make it suitable to degradation studies and to morphological characterization. Also micro-IR spectroscopy was useful in the comprehension of peptide structure on oxidized titanium: up to date this study was one of the first to employ this relatively new technique in the biomedical field.
Resumo:
Descrizione, tema e obiettivi della ricerca La ricerca si propone lo studio delle possibili influenze che la teoria di Aldo Rossi ha avuto sulla pratica progettuale nella Penisola Iberica, intende quindi affrontare i caratteri fondamentali della teoria che sta alla base di un metodo progettuale ed in particolar modo porre l'attenzione alle nuove costruzioni quando queste si confrontano con le città storiche. Ha come oggetto principale lo studio dei documenti, saggi e scritti riguardanti il tema della costruzione all'interno delle città storiche. Dallo studio di testi selezionati di Aldo Rossi sulla città si vuole concentrare l'attenzione sull'influenza che tale teoria ha avuto nei progetti della Penisola Iberica, studiare come è stata recepita e trasmessa successivamente, attraverso gli scritti di autori spagnoli e come ha visto un suo concretizzarsi poi nei progetti di nuove costruzioni all'interno delle città storiche. Si intende restringere il campo su un periodo ed un luogo precisi, Spagna e Portogallo a partire dagli anni Settanta, tramite la lettura di un importante evento che ha ufficializzato il contatto dell'architetto italiano con la Penisola Iberica, quale il Seminario di Santiago de Compostela tenutosi nel 1976. Al Seminario parteciparono numerosi architetti che si confrontarono su di un progetto per la città di Santiago e furono invitati personaggi di fama internazionale a tenere lezioni introduttive sul tema di dibattito in merito al progetto e alla città storica. Il Seminario di Santiago si colloca in un periodo storico cruciale per la Penisola Iberica, nel 1974 cade il regime salazarista in Portogallo e nel 1975 cade il regime franchista in Spagna ed è quindi di rilevante importanza capire il legame tra l'architettura e la nuova situazione politica. Dallo studio degli interventi, dei progetti che furono prodotti durante il Seminario, della relazione tra questo evento ed il periodo storico in cui esso va contestualizzato, si intende giungere alla individuazione delle tracce della reale presenza di tale eredità. Presupposti metodologici. Percorso e strumenti di ricerca La ricerca può quindi essere articolata in distinte fasi corrispondenti per lo più ai capitoli in cui si articola la tesi: una prima fase con carattere prevalentemente storica, di ricerca del materiale per poter definire il contesto in cui si sviluppano poi le vicende oggetto della tesi; una seconda fase di impronta teorica, ossia di ricerca bibliografica del materiale e delle testimonianze che provvedono alla definizione della reale presenza di effetti scaturiti dai contatti tra Rossi e la Penisola Iberica, per andare a costruire una eredità ; una terza fase che entra nel merito della composizione attraverso lo studio e la verifica delle prime due parti, tramite l'analisi grafica applicata ad uno specifico esempio architettonico selezionato; una quarta fase dove il punto di vista viene ribaltato e si indaga l'influenza dei luoghi visitati e dei contatti intrattenuti con alcuni personaggi della Penisola Iberica sull'architettura di Rossi, ricercandone i riferimenti. La ricerca è stata condotta attraverso lo studio di alcuni eventi selezionati nel corso degli anni che si sono mostrati significativi per l'indagine, per la risonanza che hanno avuto sulla storia dell'architettura della Penisola. A questo scopo si sono utilizzati principalmente tre strumenti: lo studio dei documenti, le pubblicazioni e le riviste prodotte in Spagna, gli scritti di Aldo Rossi in merito, e la testimonianza diretta attraverso interviste di personaggi chiave. La ricerca ha prodotto un testo suddiviso per capitoli che rispetta l'organizzazione in fasi di lavoro. A seguito di determinate condizioni storiche e politiche, studiate nella ricerca a supporto della tesi espressa, nella Penisola Iberica si è verificato il diffondersi della necessità e del desiderio di guardare e prendere a riferimento l'architettura europea e in particolar modo quella italiana. Il periodo sul quale viene focalizzata l'attenzione ha inizio negli anni Sessanta, gli ultimi prima della caduta delle dittature, scenario dei primi viaggi di Aldo Rossi nella Penisola Iberica. Questi primi contatti pongono le basi per intense e significative relazioni future. Attraverso l'approfondimento e la studio dei materiali relativi all'oggetto della tesi, si è cercato di mettere in luce il contesto culturale, l'attenzione e l'interesse per l'apertura di un dibattito intorno all'architettura, non solo a livello nazionale, ma europeo. Ciò ha evidenziato il desiderio di innescare un meccanismo di discussione e scambio di idee, facendo leva sull'importanza dello sviluppo e ricerca di una base teorica comune che rende coerente i lavori prodotti nel panorama architettonico iberico, seppur ottenendo risultati che si differenziano gli uni dagli altri. E' emerso un forte interesse per il discorso teorico sull'architettura, trasmissibile e comunicabile, che diventa punto di partenza per un metodo progettuale. Ciò ha reso palese una condivisione di intenti e l'assunzione della teoria di Aldo Rossi, acquisita, diffusa e discussa, attraverso la pubblicazione dei suoi saggi, la conoscenza diretta con l'architetto e la sua architettura, conferenze, seminari, come base teorica su cui fondare il proprio sapere architettonico ed il processo metodologico progettuale da applicare di volta in volta negli interventi concreti. Si è giunti così alla definizione di determinati eventi che hanno permesso di entrare nel profondo della questione e di sondare la relazione tra Rossi e la Penisola Iberica, il materiale fornito dallo studio di tali episodi, quali il I SIAC, la diffusione della rivista "2C. Construccion de la Ciudad", la Coleccion Arquitectura y Critica di Gustavo Gili, hanno poi dato impulso per il reperimento di una rete di ulteriori riferimenti. E' stato possibile quindi individuare un gruppo di architetti spagnoli, che si identificano come allievi del maestro Rossi, impegnato per altro in quegli anni nella formazione di una Scuola e di un insegnamento, che non viene recepito tanto nelle forme, piuttosto nei contenuti. I punti su cui si fondano le connessioni tra l'analisi urbana e il progetto architettonico si centrano attorno due temi di base che riprendono la teoria esposta da Rossi nel saggio L'architettura della città : - relazione tra l'area-studio e la città nella sua globalità, - relazione tra la tipologia edificatoria e gli aspetti morfologici. La ricerca presentata ha visto nelle sue successive fasi di approfondimento, come si è detto, lo sviluppo parallelo di più tematiche. Nell'affrontare ciascuna fase è stato necessario, di volta in volta, operare una verifica delle tappe percorse precedentemente, per mantenere costante il filo del discorso col lavoro svolto e ritrovare, durante lo svolgimento stesso della ricerca, gli elementi di connessione tra i diversi episodi analizzati. Tale operazione ha messo in luce talvolta nodi della ricerca rimasti in sospeso che richiedevano un ulteriore approfondimento o talvolta solo una rivisitazione per renderne possibile un più proficuo collegamento con la rete di informazioni accumulate. La ricerca ha percorso strade diverse che corrono parallele, per quanto riguarda il periodo preso in analisi: - i testi sulla storia dell'architettura spagnola e la situazione contestuale agli anni Settanta - il materiale riguardante il I SIAC - le interviste ai partecipanti al I SIAC - le traduzioni di Gustavo Gili nella Coleccion Arquitectura y Critica - la rivista "2C. Construccion de la Ciudad" Esse hanno portato alla luce una notevole quantità di tematiche, attraverso le quali, queste strade vengono ad intrecciarsi e a coincidere, verificando l'una la veridicità dell'altra e rafforzandone il valore delle affermazioni. Esposizione sintetica dei principali contenuti esposti dalla ricerca Andiamo ora a vedere brevemente i contenuti dei singoli capitoli. Nel primo capitolo Anni Settanta. Periodo di transizione per la Penisola Iberica si è cercato di dare un contesto storico agli eventi studiati successivamente, andando ad evidenziare gli elementi chiave che permettono di rintracciare la presenza della predisposizione ad un cambiamento culturale. La fase di passaggio da una condizione di chiusura rispetto alle contaminazioni provenienti dall'esterno, che caratterizza Spagna e Portogallo negli anni Sessanta, lascia il posto ad un graduale abbandono della situazione di isolamento venutasi a creare intorno al Paese a causa del regime dittatoriale, fino a giungere all'apertura e all'interesse nei confronti degli apporti culturali esterni. E' in questo contesto che si gettano le basi per la realizzazione del I Seminario Internazionale di Architettura Contemporanea a Santiago de Compostela, del 1976, diretto da Aldo Rossi e organizzato da César Portela e Salvador Tarragó, di cui tratta il capitolo secondo. Questo è uno degli eventi rintracciati nella storia delle relazioni tra Rossi e la Penisola Iberica, attraverso il quale è stato possibile constatare la presenza di uno scambio culturale e l'importazione in Spagna delle teorie di Aldo Rossi. Organizzato all'indomani della caduta del franchismo, ne conserva una reminescenza formale. Il capitolo è organizzato in tre parti, la prima si occupa della ricostruzione dei momenti salienti del Seminario Proyecto y ciudad historica, dagli interventi di architetti di fama internazionale, quali lo stesso Aldo Rossi, Carlo Aymonino, James Stirling, Oswald Mathias Ungers e molti altri, che si confrontano sul tema delle città storiche, alle giornate seminariali dedicate all’elaborazione di un progetto per cinque aree individuate all’interno di Santiago de Compostela e quindi dell’applicazione alla pratica progettuale dell’inscindibile base teorica esposta. Segue la seconda parte dello stesso capitolo riguardante La selezione di interviste ai partecipanti al Seminario. Esso contiene la raccolta dei colloqui avuti con alcuni dei personaggi che presero parte al Seminario e attraverso le loro parole si è cercato di approfondire la materia, in particolar modo andando ad evidenziare l’ambiente culturale in cui nacque l’idea del Seminario, il ruolo avuto nella diffusione della teoria di Aldo Rossi in Spagna e la ripercussione che ebbe nella pratica costruttiva. Le diverse interviste, seppur rivolte a persone che oggi vivono in contesti distanti e che in seguito a questa esperienza collettiva hanno intrapreso strade diverse, hanno fatto emergere aspetti comuni, tale unanimità ha dato ancor più importanza al valore di testimonianza offerta. L’elemento che risulta più evidente è il lascito teorico, di molto prevalente rispetto a quello progettuale che si è andato mescolando di volta in volta con la tradizione e l’esperienza dei cosiddetti allievi di Aldo Rossi. Negli stessi anni comincia a farsi strada l’importanza del confronto e del dibattito circa i temi architettonici e nel capitolo La fortuna critica della teoria di Aldo Rossi nella Penisola Iberica è stato affrontato proprio questo rinnovato interesse per la teoria che in quegli anni si stava diffondendo. Si è portato avanti lo studio delle pubblicazioni di Gustavo Gili nella Coleccion Arquitectura y Critica che, a partire dalla fine degli anni Sessanta, pubblica e traduce in lingua spagnola i più importanti saggi di architettura, tra i quali La arquitectura de la ciudad di Aldo Rossi, nel 1971, e Comlejidad y contradiccion en arquitectura di Robert Venturi nel 1972. Entrambi fondamentali per il modo di affrontare determinate tematiche di cui sempre più in quegli anni si stava interessando la cultura architettonica iberica, diventando così ¬ testi di riferimento anche nelle scuole. Le tracce dell’influenza di Rossi sulla Penisola Iberica si sono poi ricercate nella rivista “2C. Construccion de la Ciudad” individuata come strumento di espressione di una teoria condivisa. Con la nascita nel 1972 a Barcellona di questa rivista viene portato avanti l’impegno di promuovere la Tendenza, facendo riferimento all’opera e alle idee di Rossi ed altri architetti europei, mirando inoltre al recupero di un ruolo privilegiato dell’architettura catalana. A questo proposito sono emersi due fondamentali aspetti che hanno legittimato l’indagine e lo studio di questa fonte: - la diffusione della cultura architettonica, il controllo ideologico e di informazione operato dal lavoro compiuto dalla rivista; - la documentazione circa i criteri di scelta della redazione a proposito del materiale pubblicato. E’ infatti attraverso le pubblicazioni di “2C. Construccion de la Ciudad” che è stato possibile il ritrovamento delle notizie sulla mostra Arquitectura y razionalismo. Aldo Rossi + 21 arquitectos españoles, che accomuna in un’unica esposizione le opere del maestro e di ventuno giovani allievi che hanno recepito e condiviso la teoria espressa ne “L’architettura della città”. Tale mostra viene poi riproposta nella Sezione Internazionale di Architettura della XV Triennale di Milano, la quale dedica un Padiglione col titolo Barcelona, tres epocas tres propuestas. Dalla disamina dei progetti presentati è emerso un interessante caso di confronto tra le Viviendas para gitanos di César Portela e la Casa Bay di Borgo Ticino di Aldo Rossi, di cui si è occupato l’ultimo paragrafo di questo capitolo. Nel corso degli studi è poi emerso un interessante risvolto della ricerca che, capovolgendone l’oggetto stesso, ne ha approfondito gli aspetti cercando di scavare più in profondità nell’analisi della reciproca influenza tra la cultura iberica e Aldo Rossi, questa parte, sviscerata nell’ultimo capitolo, La Penisola Iberica nel “magazzino della memoria” di Aldo Rossi, ha preso il posto di quello che inizialmente doveva presentarsi come il risvolto progettuale della tesi. Era previsto infatti, al termine dello studio dell’influenza di Aldo Rossi sulla Penisola Iberica, un capitolo che concentrava l’attenzione sulla produzione progettuale. A seguito dell’emergere di un’influenza di carattere prettamente teorica, che ha sicuramente modificato la pratica dal punto di vista delle scelte architettoniche, senza però rendersi esplicita dal punto di vista formale, si è preferito, anche per la difficoltà di individuare un solo esempio rappresentativo di quanto espresso, sostituire quest’ultima parte con lo studio dell’altra faccia della medaglia, ossia l’importanza che a sua volta ha avuto la cultura iberica nella formazione della collezione dei riferimenti di Aldo Rossi. L’articolarsi della tesi in fasi distinte, strettamente connesse tra loro da un filo conduttore, ha reso necessari successivi aggiustamenti nel percorso intrapreso, dettati dall’emergere durante la ricerca di nuovi elementi di indagine. Si è pertanto resa esplicita la ricercata eredità di Aldo Rossi, configurandosi però prevalentemente come un’influenza teorica che ha preso le sfumature del contesto e dell’esperienza personale di chi se ne è fatto ricevente, diventandone così un continuatore attraverso il proprio percorso autonomo o collettivo intrapreso in seguito. Come suggerisce José Charters Monteiro, l’eredità di Rossi può essere letta attraverso tre aspetti su cui si basa la sua lezione: la biografia, la teoria dell’architettura, l’opera. In particolar modo per quanto riguarda la Penisola Iberica si può parlare dell’individuazione di un insegnamento riferito alla seconda categoria, i suoi libri di testo, le sue partecipazioni, le traduzioni. Questo è un lascito che rende possibile la continuazione di un dibattito in merito ai temi della teoria dell’architettura, della sue finalità e delle concrete applicazioni nelle opere, che ha permesso il verificarsi di una apertura mentale che mette in relazione l’architettura con altre discipline umanistiche e scientifiche, dalla politica, alla sociologia, comprendendo l’arte, le città la morfologia, la topografia, mediate e messe in relazione proprio attraverso l’architettura.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.
Resumo:
Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.