3 resultados para Perna viridis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Biochar is the solid C-rich matrix obtained by pyrolysis of biomasses, currently promoted as a soil amendment with the aim to offset anthropogenic C emissions, while ameliorating soil properties and growth conditions. Benefits from biochar seem promising, although scientific understandings are beginning to be explored. In this project, I performed a suite of experiments in controlled and in field conditions with the aims to investigate the effect of biochar on: a) the interaction with minerals; b) Fe nutrition in kiwifruit; c) soil leaching, soil fertility, soil CO2 emissions partitioning, soil bacterial profile and key gene expression of soil nitrification-involved bacteria; d) plant growth, nutritional status, yield, fruit quality and e) its physical-chemical changes as affected by long-term environmental exposure. Biochar released K, P and Mg but retained Fe, Mn, Cu and Zn on its surface which in turn hindered Fe nutrition of kiwifruit trees. A redox reaction on the biochar surface exposed to a Fe source was elucidated. Biochar reduced the amount of leached NH4+-N but increased that of Hg, K, P, Mo, Se and Sn. Furthermore, biochar synergistically interacted with compost increasing soil field capacity, fertility, leaching of DOC, TDN and RSOC, suggesting a priming effect. However, in field conditions, biochar did not affect yield, nutritional status and fruit quality. Actinomadura flavalba, Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. were peculiar of the soil amended with biochar plus compost which exhibited the highest band richness and promoted gene expression levels of Nitrosomonas spp., Nitrobacter spp. and enzymatic-related activity. Environmental exposure reduced C, K, pH and water infiltration of biochar which instead resulted in a higher O, Si, N, Na, Al, Ca, Mn and Fe at%. Oxidation occurred on the aged biochar surface, it decreased progressively with depth and induced the development of O-containing functional groups, up to 75nm depth.
Resumo:
Free-living or host-associated marine microbiomes play a determinant role in supporting the functioning and biodiversity of marine ecosystems, providing essential ecological services, and promoting the health of the entire biosphere. Currently, the fast and restless increase of World’s human population strongly impacts life on Earth in the forms of ocean pollution, coastal zone destruction, overexploitation of marine resources, and climate change. Thanks to their phylogenetic, metabolic, and functional diversity, marine microbiomes represent the Earth’s biggest reservoir of solutions against the major threats that are now impacting marine ecosystems, possibly providing valuable insights for biotechnological applications to preserve the health of the ocean ecosystems. Microbial-based mitigation strategies heavily rely on the available knowledge on the specific role and composition of holobionts associated microbial communities, thus highlighting the importance of pioneer studies on microbial-mediated adaptive mechanisms in the marine habitats. In this context, we propose different models representing ecologically important, widely distributed, and habitat-forming organisms, to further investigate the ability of marine holobionts to dynamically adapt to natural environmental variations, as well as to anthropogenic stress factors. In this PhD thesis, we were able to supply the characterization of the microbial community associated with the model anthozoan cnidaria Corynactis viridis throughout a seasonal gradient, to provide critical insights into microbiome-host interactions in a biomonitoring perspective. We also dissected in details the microbial-derived mitigation strategies implemented by the benthonic anthozoan Anemonia viridis and the gastropod Patella caerulea as models of adaptation to anthropogenic stressors, in the context of bioremediation of human-impacted habitats and for the monitoring and preservation of coastal marine ecosystems, respectively. Finally, we provided a functional model of adaptation to future ocean acidification conditions by characterizing the microbial community associated with the temperate coral Balanophyllia europaea naturally living at low pH conditions, to implement microbial based actions to mitigate climate change.