9 resultados para Peripheral arterial disease
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.
Resumo:
Objectives In diabetic and non diabetic patients with peripheral artery obstructive disease (PAOD), we sought to establish whether the vascular wall damage, the mature circulating endothelium and the "in situ" neoangiogenesis are related with each other. Design In the peripheral blood of diabetic patients suffering critical ischaemia associated with peripheral artery disease, low levels and poor function of circulating endothelial progenitor cells (EPCs) were observed. Moreover, circulating endothelial cells (CECs) have been described in different conditions of vascular injury. In this type of disorders, which are all characterized by endothelial damage, neoangiogenesis plays a key role. Materials In the study we recruited 22 diabetic and 16 non diabetic patients, all of them suffering PAOD and critical ischaemia; healthy subjects and multiorgan donors have also been considered like controls. Methods Histopathologic characterization was performed on arterial tissue samples under a light microscope. Flow cytofluorimetric analysis was used to quantify CECs in peripheral blood samples. "In situ" expression of the Vascular Endothelial Growth Factor (VEGF) and Metalloproteinase 9 (MMP-9) transcripts was quantified in a Real Time-PCR analysis. Circulating VEGF concentration was determined by an ELISA assay. Results Arterial wall from diabetic patients, compared with non diabetic subjects, revealed a higher incidence of serious lesions (60% vs 47%) and a lower number of capillaries (65% vs 87%). Mean number of CECs/ml was significantly increased in all patients, compared to healthy controls (p=0.001). Compared to healthy subjects, VEGF transcripts expression resulted significantly higher in diabetic patients and in all patients (p<0.05) and a similar result was obtained in the MMP-9 transcripts expression. Serum VEGF concentration was significantly increased in PAOD patients correlated with controls (p=0.0431). Conclusions Our study demonstrates that in all patients considered, probably, regressive phenomenons prevail on reparative ones, causing an inesorable and progressive degeneration of the vascular wall, worse by diabetes. The vascular damage can be monitored by determining CECs number and its severity and development are emphasized by the MMP-9 transcripts expression. The "in situ" VEGF increased expression seems to be the evidence of a parietal cells bid to induce local angiogenesis. This reparing mechanism could induce the EPCs mobilitation by means the release of VEGF from the arterial wall. The mechanism, however, is ineffective like demonstrated by the EPCs reduced number and activities observed in patients suffering PAOD and critical ischaemia.
Resumo:
Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures
Resumo:
Introduction The “eversion” technique for carotid endarterectomy (e-CEA), that involves the transection of the internal carotid artery at the carotid bulb and its eversion over the atherosclerotic plaque, has been associated with an increased risk of postoperative hypertension possibly due to a direct iatrogenic damage to the carotid sinus fibers. The aim of this study is to assess the long-term effect of the e-CEA on arterial baroreflex and peripheral chemoreflex function in humans. Methods A retrospective review was conducted on a prospectively compiled computerized database of 3128 CEAs performed on 2617 patients at our Center between January 2001 and March 2006. During this period, a total of 292 patients who had bilateral carotid stenosis ≥70% at the time of the first admission underwent staged bilateral CEAs. Of these, 93 patients had staged bilateral e-CEAs, 126 staged bilateral s- CEAs and 73 had different procedures on each carotid. CEAs were performed with either the eversion or the standard technique with routine Dacron patching in all cases. The study inclusion criteria were bilateral CEA with the same technique on both sides and an uneventful postoperative course after both procedures. We decided to enroll patients submitted to bilateral e-CEA to eliminate the background noise from contralateral carotid sinus fibers. Exclusion criteria were: age >70 years, diabetes mellitus, chronic pulmonary disease, symptomatic ischemic cardiac disease or medical therapy with b-blockers, cardiac arrhythmia, permanent neurologic deficits or an abnormal preoperative cerebral CT scan, carotid restenosis and previous neck or chest surgery or irradiation. Young and aged-matched healthy subjects were also recruited as controls. Patients were assessed by the 4 standard cardiovascular reflex tests, including Lying-to-standing, Orthostatic hypotension, Deep breathing, and Valsalva Maneuver. Indirect autonomic parameters were assessed with a non-invasive approach based on spectral analysis of EKG RR interval, systolic arterial pressure, and respiration variability, performed with an ad hoc software. From the analysis of these parameters the software provides the estimates of spontaneous baroreflex sensitivity (BRS). The ventilatory response to hypoxia was assessed in patients and controls by means of classic rebreathing tests. Results A total of 29 patients (16 males, age 62.4±8.0 years) were enrolled. Overall, 13 patients had undergone bilateral e-CEA (44.8%) and 16 bilateral s-CEA (55.2%) with a mean interval between the procedures of 62±56 days. No patient showed signs or symptoms of autonomic dysfunction, including labile hypertension, tachycardia, palpitations, headache, inappropriate diaphoresis, pallor or flushing. The results of standard cardiovascular autonomic tests showed no evidence of autonomic dysfunction in any of the enrolled patients. At spectral analysis, a residual baroreflex performance was shown in both patient groups, though reduced, as expected, compared to young controls. Notably, baroreflex function was better maintained in e-CEA, compared to standard CEA. (BRS at rest: young controls 19.93 ± 2.45 msec/mmHg; age-matched controls 7.75 ± 1.24; e-CEA 13.85 ± 5.14; s-CEA 4.93 ± 1.15; ANOVA P=0.001; BRS at stand: young controls 7.83 ± 0.66; age-matched controls 3.71 ± 0.35; e-CEA 7.04 ± 1.99; s-CEA 3.57 ± 1.20; ANOVA P=0.001). In all subjects ventilation (VÝ E) and oximetry data fitted a linear regression model with r values > 0.8. Oneway analysis of variance showed a significantly higher slope both for ΔVE/ΔSaO2 in controls compared with both patient groups which were not different from each other (-1.37 ± 0.33 compared with -0.33±0.08 and -0.29 ±0.13 l/min/%SaO2, p<0.05, Fig.). Similar results were observed for and ΔVE/ΔPetO2 (-0.20 ± 0.1 versus -0.01 ± 0.0 and -0.07 ± 0.02 l/min/mmHg, p<0.05). A regression model using treatment, age, baseline FiCO2 and minimum SaO2 achieved showed only treatment as a significant factor in explaining the variance in minute ventilation (R2= 25%). Conclusions Overall, we demonstrated that bilateral e-CEA does not imply a carotid sinus denervation. As a result of some expected degree of iatrogenic damage, such performance was lower than that of controls. Interestingly though, baroreflex performance appeared better maintained in e-CEA than in s-CEA. This may be related to the changes in the elastic properties of the carotid sinus vascular wall, as the patch is more rigid than the endarterectomized carotid wall that remains in the e-CEA. These data confirmed the safety of CEA irrespective of the surgical technique and have relevant clinical implication in the assessment of the frequent hemodynamic disturbances associated with carotid angioplasty stenting.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.
Resumo:
With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.
Resumo:
Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder and according to the WHO it is estimated that 36 millions of people worldwide currently suffer from AD. Genetic and environmental factors interact in a complex interplay that might affect pathogenic mechanisms leading to age-related neurodegeneration. The hypothesis is that the presence of allelic polymorphisms in selected genes affecting individual brain susceptibility to infection by the herpes virus family during aging, may contribute to neuronal loss, inflammation and amyloid deposition. Herpes virus family show features relevant to AD, since they infect a large proportion of human population, develop a latent form persisting for several years, are difficult to eliminate by immune responses especially when latency has been established and are able to infect neurons. The association between AD and herpes viruses infection has been investigated. In particular the investigation focused on CMV, EBV and HHV-6 in DNA samples from peripheral blood of a large cohort of patients with clinical diagnosis of AD and age matched CTR, from a longitudinal population study, and DNA samples from brain tissue of patients with neuropathological diagnosis of definitive AD. An association between the presence of EBV and HHV-6 DNA from PBL positivity with the cognitive deterioration and progression to AD has been focused. Moreover, IgG plasma levels in CTR and AD to these viruses were tested. CMV and EBV IgG plasma levels were higher in elderly subjects that developed clinical AD at the end of the five year follow up. Our findings support the notion that persistent cycles of latency and reactivation of herpes viruses may contribute to impair systemic immune response and induce altered inflammatory process that in turn affect cognitive decline during aging.
Resumo:
NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.
Resumo:
Circulating Fibrocytes (CFs) are bone marrow-derived mesenchymal progenitor cells that express a similar pattern of surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. CFs precursor display an ability to differentiate into fibroblasts and Myofibroblasts, as well as adipocytes. Fibrocytes have been shown to contribute to tissue fibrosis in the end-stage renal disease (ESRD), as well as in other fibrotic diseases, leading to fibrogenic process in other organs including lung, cardiac, gut and liver. This evidence has been confirmed by several experimental proofs in mice models of kidney injury. In the present study, we developed a protocol for the study of CFs, by using peripheral blood monocytes cells (PBMCs) samples collected from healthy human volunteers. Thanks to a flow cytometry method, in vitro culture assays and the gene expression assays, we are able to study and characterize this CFs population. Moreover, results confirmed that these approaches are reliable and reproducible for the investigation of the circulating fibrocytes population in whole blood samples. Our final aim is to confirm the presence of a correlation between the renal fibrosis progression, and the different circulating fibrocyte levels in Chronic Kidney Disease (CKD) patients. Thanks to a protocol study presented and accepted by the Ethic Committee we are continuing the study of CFs induction in a cohort of sixty patients affected by CKD, divided in three distinct groups for different glomerular filtration rate (GFR) levels, plus a control group of thirty healthy subjects. Ongoing experiments will determine whether circulating fibrocytes represent novel biomarkers for the study of CKD progression, in the early and late phases of this disease.