13 resultados para Pavements, Wooden.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
There is a constant need to improve the infrastructure's quality and build new infrastructure with better designs. The risk of accidents and noise can be reduced by improving the surface properties of the pavement. The amount of raw material used in road construction is worrisome, as it is finite and due the waste produced. Environmentally-friendly roads construction, recycling might be the main way. Projects must be more environmentally-friendly, safer, and quieter. Is it possible to develop a safer, quieter and environmentally-friendly pavement surfaces? The hypothesis is: is it possible to create an Artificial Engineered Aggregate (AEA) using waste materials and providing it with a specific shape that can help to reduce the noise and increase the friction? The thesis presents the development of an AEA and its application as a partial replacement in microsurfacing samples. The 1st introduces the topic and provides the aim and objectives of the thesis. The 2nd chapter – presents a pavement solution to noise and friction review. The 3rd chapter - developing a mix design for a geopolymer mortar that used basalt powder. The 4th chapter is presented the physical-mechanical evaluation of the AEA. The 5th chapter evaluates the use of this aggregate in microsurfacing regarding the texture parameters. The 6th chapter, those parameter are used as an input to SPERoN® model, simulating their noise behavior of these solutions. The findings from this thesis are presented as partial conclusions in each chapter, to be closed in a final chapter. The main findings are: the DoE provided the tool to select the appropriate geopolymer mortar mix design; AEA had interesting results regarding the physical-mechanical tests; AEA in partial replacement of the natural aggregates in microsurfacing mixture proved feasible. The texture parameters and noise levels obtained in AEA samples demonstrate that it can serve as a HIFASP
Resumo:
Growing need for infrastructure has led to expanding research on advances in road pavement materials. Finding solutions that are sustainable, environmentally friendly and cost-efficient is a priority. Focusing such efforts on low-traffic and rural roads can contribute with a significant progress in the vital circulatory system of transport for rural and agricultural areas. An important alternative material for pavement construction is recycled aggregates from solid wastes, including waste from civil engineering activities, mainly construction and demolition. A literature review on studies is made; it is performed a planned set of laboratory testing procedures aimed to fully characterize and assess the potential in-situ mechanical performance and chemical impact. Furthermore, monitoring the full-scale response of the selected materials in a real field construction site, including the production, laying and compaction operations. Moreover, a novel single-phase solution for the construction of semi-flexible paving layers to be used as alternative material to common concrete and bituminous layers is experimented and introduced, aiming the production and laying of a single-phase laid material instead of a traditional two phases grouted macadam. Finally, on a parallel research work for farming pavements, the possible use of common geotechnical anti-erosive products for the improvement of soil bearing capacity of paddock areas in cattle husbandries of bio-farms is evaluated. this thesis has clearly demonstrated the feasibility of using the sustainable recycled aggregates for low-traffic rural roads and the pavements of farming and agriculture areas. The pavement layers constructed with recycled aggregates provided satisfying performance under heavy traffic conditions in experimental pavements. This, together with the fact that these aggregates can be available in most areas and in large quantities, provides great impetus towards shifting from traditional materials to more sustainable alternatives. The chemical and environmental stability of these materials proves their soundness to be utilized in farming environments.
Resumo:
Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavementsâ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.
Resumo:
This work studies the impact of two traditional Romanian treatments, Red Petroleum and Propolis, in terms of real efficiency and consequence on the wooden artifacts. The application of these solutions is still a widely adopted and popular technique in preservative conservation but the impact of these solutions is not well known. It is important to know the effect of treatments on chemical-physical and structural characteristics of the artifacts, not only for understanding the influence on present conditions but also for foreseeing the future behavior. These treatments with Romanian traditional products are compared with a commercial antifungal product, Biotin R, which is utilized as reference to control the effectiveness of Red Petroleum and Propolis. Red Petroleum and Propolis are not active against mould while Biotin R is very active. Mould attack is mostly concentrated in the painted layer, where the tempera, containing glue and egg, enhance nutrition availability for moulds. Biotin R, even if is not a real insecticide but a fungicide, was the most active product against insect attack of the three products, followed by Red Petroleum, Propolis and untreated reference. As for colour, it did not change so much after the application of Red Petroleum and Biotin R and the colour difference was almost not perceptible. On the contrary, Propolis affected the colour a lot. During the exposure at different RH, the colour changes significantly at 100% RH at equilibrium and this is mainly due to the mould attack. Red Petroleum penetrates deeply into wood, while Propolis does not penetrate and remains only on the surface. However, Red Petroleum does not interact chemically with wood substance and it is easy volatilized in oven-dry condition. On the contrary Propolis interacts chemically with wood substance and hardly volatilized, even in oven-dry condition and consequently Propolis remains where it penetrated, mostly on the surface. Treatment by immersion has impact on wood physical parameters while treatment by brushing does not have significant impact. Especially Red Petroleum has an apparent impact on moisture content (MC) due to the penetration of solution, while Propolis does not penetrate so much and remains only on surface therefore Propolis does not have so much impact as Red Petroleum. However, if the weight of the solution penetrated in wood is eliminated, there is not significant difference in MC between treated and untreated samples. Considering physical parameters, dimensional stability is an important parameter. The variation of wood moisture content causes shrinkages/swelling of the wood that polychrome layer can only partially follow. The dimension of wooden supports varied under different moisture conditioning; the painted layer cannot completely follow this deformation, and consequently a degradation and deterioration caused by detachment, occurs. That detachment affects the polychrome stratification of the panel painting and eventually the connections between the different layer compositions of the panel painting.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
Translations, says Gideon Toury, are facts of target cultures – but the perceived status of source texts has a bearing on how these are reflected or refracted in the target language. This proposition is particularly evident in the case of classics: when translators have to work on literary creations occupying a pivotal position in the source/target cultures, they adopt strategies of literalness and ennoblement which betray a quasi-religious awe – on the one hand, a desire to ruffle the surface of the revered original as little as possible; and on the other, a determination to reproduce the supposed “classical qualities” of the classic even when they are not present in the source. In this dissertation, Paola Venturi studies how the “idea of classic” influences translation theory and practice, and substantiates her theoretical observations by looking at Italian translations of eighteenth- and nineteenth-century English classics. A marked – and historically determined – disparity between source and target readerships, and the translators’ reverence for their prestigious originals, conspire to produce Italian versions which are much more “wooden and “elegant” than their English counterparts.
Resumo:
The needs of customers to improve machinery in recent years have driven tractor manufacturers to reduce product life and development costs. The most significant efforts have concentrated on the attempt to decrease the costs of the experimental testing sector. The validation of the tractor prototypes are presently performed with a replication of a particularly unfavourable condition a defined number of times. These laboratory tests do not always faithfully reproduce the real use of the tractor. Therefore, field tests are also carried out to evaluate the prototype during real use, but it is difficult to perform such tests for a period of time long enough to reproduce tractor life usage. In this context, accelerated tests have been introduced in the automotive sector, producing a certain damage to the structure in a reduced amount of time. The goal of this paper is to define a methodology for the realization of accelerated structural tests on a tractor, through the reproduction of real customer tractor usage. A market analysis was performed on a 80 kW power tractor and a series of measures were then taken to simulate the real use of the tractor. Subsequently, the rainflow matrixes of the signals were extrapolated and used to estimate the tractor loadings for 10 years of tractor life. Finally these loadings were reproduced on testing grounds with special road pavements. The results obtained highlight the possibility of reproducing field loadings during road driving on proving grounds (PGs), but the use of two field operations is also necessary. The global acceleration factor obtained in this first step of the methodology is equal to three.
Resumo:
I crescenti volumi di traffico che interessano le pavimentazioni stradali causano sollecitazioni tensionali di notevole entità che provocano danni permanenti alla sovrastruttura. Tali danni ne riducono la vita utile e comportano elevati costi di manutenzione. Il conglomerato bituminoso è un materiale multifase composto da inerti, bitume e vuoti d'aria. Le proprietà fisiche e le prestazioni della miscela dipendono dalle caratteristiche dell'aggregato, del legante e dalla loro interazione. L’approccio tradizionalmente utilizzato per la modellazione numerica del conglomerato bituminoso si basa su uno studio macroscopico della sua risposta meccanica attraverso modelli costitutivi al continuo che, per loro natura, non considerano la mutua interazione tra le fasi eterogenee che lo compongono ed utilizzano schematizzazioni omogenee equivalenti. Nell’ottica di un’evoluzione di tali metodologie è necessario superare questa semplificazione, considerando il carattere discreto del sistema ed adottando un approccio di tipo microscopico, che consenta di rappresentare i reali processi fisico-meccanici dai quali dipende la risposta macroscopica d’insieme. Nel presente lavoro, dopo una rassegna generale dei principali metodi numerici tradizionalmente impiegati per lo studio del conglomerato bituminoso, viene approfondita la teoria degli Elementi Discreti Particellari (DEM-P), che schematizza il materiale granulare come un insieme di particelle indipendenti che interagiscono tra loro nei punti di reciproco contatto secondo appropriate leggi costitutive. Viene valutata l’influenza della forma e delle dimensioni dell’aggregato sulle caratteristiche macroscopiche (tensione deviatorica massima) e microscopiche (forze di contatto normali e tangenziali, numero di contatti, indice dei vuoti, porosità, addensamento, angolo di attrito interno) della miscela. Ciò è reso possibile dal confronto tra risultati numerici e sperimentali di test triassiali condotti su provini costituiti da tre diverse miscele formate da sfere ed elementi di forma generica.
Resumo:
Il recupero dei materiali di scarto è un aspetto di grande attualità in campo stradale, così come negli altri ambiti dell’ingegneria civile. L’attenzione della ricerca e degli esperti del settore è rivolta all’affinamento di tecniche di riciclaggio che riducano l’impatto ambientale senza compromettere le prestazioni meccaniche finali. Tali indagini cercano di far corrispondere le necessità di smaltimento dei rifiuti con quelle dell’industria infrastrutturale, legate al reperimento di materiali da costruzione tecnicamente idonei ed economicamente vantaggiosi. Attualmente sono già diversi i tipi di prodotti rigenerati e riutilizzati nella realizzazione delle pavimentazioni stradali e numerosi sono anche quelli di nuova introduzione in fase di sperimentazione. In particolare, accanto ai materiali derivanti dalle operazioni di recupero della rete viaria, è opportuno considerare anche quelli provenienti dall’esercizio delle attività di trasporto, il quale comporta ogni anno il raggiungimento della fine della vita utile per centinaia di migliaia di tonnellate di pneumatici di gomma. L’obiettivo della presente analisi sperimentale è quello di fornire indicazioni e informazioni in merito alla tecnica di riciclaggio a freddo con emulsione bituminosa e cemento, valutando la possibilità di applicazione di tale metodologia in combinazione con il polverino di gomma, ottenuto dal recupero degli pneumatici fuori uso (PFU). La ricerca si distingue per una duplice valenza: la prima è quella di promuovere ulteriormente la tecnica di riciclaggio a freddo, che si sta imponendo per i suoi numerosi vantaggi economici ed ambientali, legati soprattutto alla temperatura d’esercizio; la seconda è quella di sperimentare l’utilizzo del polverino di gomma, nelle due forme di granulazione tradizionale e criogenica, additivato a miscele costituite interamente da materiale proveniente da scarifica di pavimentazioni esistenti e stabilizzate con diverse percentuali di emulsione di bitume e di legante cementizio.
Resumo:
La ripresa degli studi sulla manualistica del recupero ha contribuito, attraverso una lettura tecnica vista in prospettiva storica, a diffondere sensibilità conoscitiva e consapevolezza del patrimonio premoderno. Tuttavia l’esigenza di superare il tracciato delineato dall’uso dei manuali di recupero – da molti intesi, semplicisticamente, come cataloghi per soluzioni architettoniche di ripristino e ricostruzione – ha reso indispensabile una riflessione sul reale bisogno di questi strumenti e sulle loro ripercussioni operative. Se i manuali, spesso, esprimono una visione statica e totalizzante dell’edilizia storica, l’atlante dichiara una concezione dinamica e “sempre aperta”, in cui ogni elemento rilevato è caso a sé. L’atlante fa, quindi, riferimento ad una concezione “geografica” in cui la catalogazione non è esaustiva e dogmatica ma, contrariamente, dà luogo ad un repertorio di casi criticamente analizzati nell’ottica della conoscenza e della conservazione. L’obiettivo della ricerca non è consistito, pertanto, nel descrivere la totalità dei caratteri costruttivi e delle loro combinazioni, ma nell’individuare casi singoli che sono letti ed interpretati all’interno del loro contesto storico-costruttivo e che valgono quale monito per un’azione progettuale consapevole, orientata al minimo intervento e alla compatibilità fisico-meccanica, figurativa e filologica. Nello specifico la ricerca, collocata in un riferimento temporale compreso tra il XIII e il XIX secolo, ha approfondito i seguenti caratteri: solai lignei, appartato decorativo in cotto e portali. Attraverso un approccio interdisciplinare lo studio si è proposto di contribuire alla costituzione di una metodologia di ricerca sulle tecniche costruttive storiche, ravvisando nel momento conoscitivo la prima fase del progetto di conservazione. È indiscusso, infatti, il solido legame che esiste tra conoscenza, progetto ed operatività. Solo attraverso la consapevolezza storica e architettonica del manufatto è possibile individuare scelte conservative criticamente vagliate ed operare in funzione della specificità del caso in esame e delle sue reali necessità.
Resumo:
A design can be defined as context-sensitive when it achieves effective technical and functional transportation solutions, while preserving and enhancing natural environments and minimizing impacts on local communities. Traffic noise is one of the most critical environmental impacts of transportation infrastructure and it affects both humans and ecosystems. Tire/pavement noise is caused by a set of interactions at the contact patch and it is the predominant source of road noise at the regular traffic speeds. Wearing course characteristics affect tire/pavement noise through various mechanisms. Furthermore, acoustic performance of road pavements varies over time and it is influenced by both aging and temperature. Three experimentations have been carried out to evaluate wearing course characteristics effects on tire/pavement noise. The first study involves the evaluation of skid resistance, surface texture and tire/pavement noise of an innovative application of multipurpose cold-laid microsurfacing. The second one involves the evaluation of the surface and acoustic characteristics of the different pavement sections of the test track of the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo. In the third study, a set of highway sections have been selected in Southern Ontario with various types of pavements. Noise measurements were carried out by means of the Statistical Pass-by (SPB) method in the first case study, whereas in the second and in the third one, Close-proximity (CPX) and the On-Board Sound Intensity (OBSI) methods have been performed in parallel. Test results have contributed to understand the effects of pavement materials, temperature and aging on tire/pavement noise. Negligible correlation was found between surface texture and roughness with noise. As a general trend, aged and stiffer materials have shown to provide higher noise levels than newer and less stiff ones. Noise levels were also observed to be higher with temperature increase.
Resumo:
Recently, global meat market is facing several dramatic changes due to shifting in diet and life style, consumer demands, and economical considerations. Firstly, there was a tremendous increase in the poultry meat demand. Furthermore, current forecast and projection studies pointed out that the expansion of the poultry market will continue in future. In response to this demand, there was a great success to increase growth rate of meat-type chickens in the last few decades in order to optimize the production of poultry meat. Accordingly, the increase of growth rate induced the appearance of several muscle abnormalities such as pale-soft-exudative (PSE) syndrome and deep-pectoral-myopathy (DPM) and more recently white striping and wooden breast. Currently, there is growing interest in meat industry to understand how much the magnitude of the effect of these abnormalities on different quality traits for raw and processed meat. Therefore, the major part of the research activities during the PhD project was dedicated to evaluate the different implications of recent muscle abnormalities such as white striping and wooden breast on meat quality traits and their incidence under commercial conditions. Generally, our results showed that the incidence of these muscle abnormalities was very high under commercial conditions and had great adverse impact on meat quality traits. Secondly, there is growing market share of convenient, healthy, and functional processed meat products. Accordingly, the remaining part of research activities of the PhD project was dedicated to evaluate the possibility to formulate processed meat products with higher perceived healthy profile such as phosphate free-marinated chicken meat and low sodium-marinated rabbit meat products. Overall all findings showed that sodium bicarbonate can be considered as promising component to replace phosphates in meat products, while potassium chloride under certain conditions was successfully used to produce low marinated rabbit meat products.
Resumo:
La tesi ha come oggetto il rinnovamento urbano che fu realizzato a Faenza per opera del suo signore Carlo II Manfredi tra il 1468 e il 1477, d’accordo con il fratello, il vescovo Federico. La prima opera realizzata da Carlo fu il portico a due livelli che dotò di una nuova facciata il suo palazzo di residenza, di origini medievali. Questa architettura sarebbe stata il preludio di un riordino generale della piazza principale della città, probabilmente allo scopo di ricreare un foro all’antica, come prescritto dai trattati di Vitruvio e di Alberti. L’aspetto originale del loggiato rinascimentale, desumibile da documentazione archivistica e iconografica, permette di attribuirlo con una certa probabilità a Giuliano da Maiano. Oltre alla piazza, Carlo riformò profondamente il tessuto urbano, demolendo molti portici lignei di origine medievale, rettificando le principali strade, completando la cerchia muraria. Federico Manfredi nel 1474 diede inizio alla fabbrica della Cattedrale, ricostruita dalle fondamenta su progetto dello stesso Giuliano da Maiano. L’architettura della chiesa ha uno stile largamente debitore all’architettura sacra di Brunelleschi, ma con significative differenze (come la navata definita da un’alternanza tra pilastri e colonne, o la copertura composta da volte a vela). L’abside della cattedrale, estranea al progetto maianesco, fu realizzata nel 1491-92 e mostra alcuni dettagli riconducibili alla coeva architettura di Bramante. A Faenza si realizza in un periodo di tempo brevissimo una profonda trasformazione del volto della città: loggiato, riforma della piazza, riordino delle strade, una nuova cattedrale, tutto contribuisce a dare lustro ai Manfredi e a fare di Faenza una città moderna e in cui si mettono in pratica, forse per la prima volta nell’Italia settentrionale, i dettami di Vitruvio e di Alberti.