5 resultados para Pattern Taxonomy Model

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis proposes a new document model, according to which any document can be segmented in some independent components and transformed in a pattern-based projection, that only uses a very small set of objects and composition rules. The point is that such a normalized document expresses the same fundamental information of the original one, in a simple, clear and unambiguous way. The central part of my work consists of discussing that model, investigating how a digital document can be segmented, and how a segmented version can be used to implement advanced tools of conversion. I present seven patterns which are versatile enough to capture the most relevant documents’ structures, and whose minimality and rigour make that implementation possible. The abstract model is then instantiated into an actual markup language, called IML. IML is a general and extensible language, which basically adopts an XHTML syntax, able to capture a posteriori the only content of a digital document. It is compared with other languages and proposals, in order to clarify its role and objectives. Finally, I present some systems built upon these ideas. These applications are evaluated in terms of users’ advantages, workflow improvements and impact over the overall quality of the output. In particular, they cover heterogeneous content management processes: from web editing to collaboration (IsaWiki and WikiFactory), from e-learning (IsaLearning) to professional printing (IsaPress).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the problems in the analysis of nucleus-nucleus collisions is to get information on the value of the impact parameter b. This work consists in the application of pattern recognition techniques aimed at associating values of b to groups of events. To this end, a support vec- tor machine (SVM) classifier is adopted to analyze multifragmentation reactions. This method allows to backtracing the values of b through a particular multidimensional analysis. The SVM classification con- sists of two main phase. In the first one, known as training phase, the classifier learns to discriminate the events that are generated by two different model:Classical Molecular Dynamics (CMD) and Heavy- Ion Phase-Space Exploration (HIPSE) for the reaction: 58Ni +48 Ca at 25 AMeV. To check the classification of events in the second one, known as test phase, what has been learned is tested on new events generated by the same models. These new results have been com- pared to the ones obtained through others techniques of backtracing the impact parameter. Our tests show that, following this approach, the central collisions and peripheral collisions, for the CMD events, are always better classified with respect to the classification by the others techniques of backtracing. We have finally performed the SVM classification on the experimental data measured by NUCL-EX col- laboration with CHIMERA apparatus for the previous reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models have been relevant to study the molecular mechanisms of cancer and to develop new antitumor agents. Anyway, the huge divergence in mouse and human evolution made difficult the translation of the gained achievements in preclinical mouse based studies. The generation of clinically relevant murine models requires their humanization both concerning the creation of transgenic models and the generation of humanized mice in which to engraft a functional human immune system, and reproduce the physiological effects and molecular mechanisms of growth and metastasization of human tumors. In particular, the availability of genotypically stable immunodepressed mice able to accept tumor injection and allow human tumor growth and metastasization would be important to develop anti-tumor and anti-metastatic strategies. Recently, Rag2-/-;gammac-/- mice, double knockout for genes involved in lymphocyte differentiation, had been developed (CIEA, Central Institute for Experimental Animals, Kawasaki, Japan). Studies of human sarcoma metastasization in Rag2-/-; gammac-/- mice (lacking B, T and NK functionality) revealed their high metastatic efficiency and allowed the expression of human metastatic phenotypes not detectable in the conventionally used nude murine model. In vitro analysis to investigate the molecular mechanisms involved in the specific pattern of human sarcomas metastasization revealed the importance of liver-produced growth and motility factors, in particular the insulin-like growth factors (IGFs). The involvement of this growth factor was then demonstrated in vivo through inhibition of IGF signalling pathway. Due to the high growth and metastatic propensity of tumor cells, Rag2-/-;gammac-/- mice were used as model to investigate the metastatic behavior of rhabdomyosarcoma cells engineered to improve the differentiation. It has been recently shown that this immunodeficient model can be reconstituted with a human immune system through the injection of human cord blood progenitor cells. The work illustrated in this thesis revealed that the injection of different human progenitor cells (CD34+ or CD133+) showed peculiar engraftment and differentiation abilities. Experiments of cell vaccination were performed to investigate the functionality of the engrafted human immune system and the induction of specific human immune responses. Results from such experiments will allow to collect informations about human immune responses activated during cell vaccination and to define the best reconstitution and experimental conditions to create a humanized model in which to study, in a preclinical setting, immunological antitumor strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project aims at deepening the understanding of the molecular basis of the phenotypic heterogeneity of prion diseases. Prion diseases represent the first and clearest example of “protein misfolding diseases”, that are all the neurodegenerative diseases caused by the accumulation of misfolded proteins in the central nervous system. In the field of protein misfolding diseases, the term “strain” describes the heterogeneity observed among the same disease in the clinical and pathologic progression, biochemical features of the aggregated protein, conformational memory and pattern of lesions. In this work, the two most common strains of Creutzfeldt-Jakob Disease (CJD), named MM1 and VV2, were analyzed. This thesis investigates the strain paradigm with the production of new multi omic data, and, on such data, appropriate computational analysis combining bioinformatics, data science and statistical approaches was performed. In this work, genomic and transcriptomic profiling allowed an improved characterization of the molecular features of the two most common strains of CJD, identifying multiple possible genetic contributors to the disease and finding several shared impaired pathways between the VV2 strain and Parkinson Disease. On the epigenomic level, the tridimensional chromatin folding in peripheral immune cells of CJD patients at onset and of healthy controls was investigated with Hi-C. While being the first application of this very advanced technology in prion diseases and one of the first in general in neurobiology, this work found a significant and diffuse loss of genomic interactions in immune cells of CJD patients at disease onset, particularly in the PRNP locus, suggesting a possible impairment of chromatin conformation in the disease. The results of this project represent a novelty in the state of the art in this field, both from a biomedical and technological point of view.