6 resultados para Patient in the terminal phase
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Levulinic acid (LA) is a polyfunctional molecule obtained from biomass. Because of its structure, the United States Department of energy classified LA as one of the top 12 building block chemicals. Typically, it is valorized through chemical reduction to γ-valerolactone (GVL). It is usually done with H2 in batch systems with high H2 pressures and noble metal catalysts, making it expensive and less applicable. Therefore, alternative approaches such as catalytic transfer hydrogenation (CTH) through the Meerwein–Ponndorf–Verley (MPV) reaction over heterogeneous catalysts have been studied. This uses organic molecules (alcohols) which act as a hydride transfer agent (H-donor), to reduce molecules containing carbonyl groups. Given the stability of the intermediate, reports have shown the batch liquid-phase CTH of levulinate esters with secondary alcohols, and remarkable results (GVL yield) have been obtained over ZrO2, given the need of a Lewis acid (LASites) and base pair for CTH. However, there were no reports of the continuous gas-phase CTH of levulinate esters. Therefore, high surface area ZrO2 was tested for gas-phase CTH of methyl levulinate (ML) using ethanol, methanol and isopropanol as H-donors. Under optimized conditions with ethanol (250 ℃), the reaction is selective towards GVL (yield 70%). However, heavy carbonaceous materials over the catalyst surface progressively blocked LASites changing the chemoselectivity. The in situ regeneration of the catalyst permitted a partial recovery of the LASites and an almost total recovery of the initial catalytic behavior, proving the deactivation reversible. Tests with methanol were not promising (ML conversion 35%, GVL yield 4%). As expected, using isopropanol provided complete conversion and a GVL yield of 80%. The reaction was also tested using bioethanol derived from agricultural waste. In addition, a preliminary study was performed for the hydrogenolysis of polyols to produce bioethanol, were Pd-Fe catalyst promoted the ethanol selective (37%) hydrogenolysis of glycerol.
Resumo:
Primary angioplasty has been shown to be more effective than fibrinolysis in terms of mortality and adverse outcomes. More recent data, however, suggests that timely reperfusion with fibrinolysis is comparable to primary angioplasty. The current study gathered data from the International Survey of Acute Coronary Syndromes in Transitional Countries registry. Among 7406 ST-elevation myocardial infarction patients presenting within 12 hours from symptom onset, 6315 underwent primary percutaneous coronary intervention and 1091 were treated with fibrinolysis. The primary outcome was 30-day mortality, while the secondary outcome was a composite of 30-day incidence of death, severe left ventricular dysfunction, stroke or reinfarction. Patients who underwent primary angioplasty tended to have a greater cardiovascular risk profile and were slightly older. On the other hand, patients treated with fibrinolysis received less anti-platelet medications yet were more often prescribed beta blockers in the acute phase. Among those who received fibrinolysis, 43% underwent coronary angiography while 32.3% were treated with a subsequent angioplasty. Total ischemic time was lower in patients undergoing fibrinolysis (185 minutes) than in those treated with primary angioplasty (258 minutes). Rates of primary and secondary combined endpoints were higher in patients receiving fibrinolysis compared to those receiving primary angioplasty (7.8% vs. 4.1%; p<0.0001; OR 1.97, 95% CI, 1.38-2.81; and 14.8% vs. 10.1%, p<0.0001; OR 1.43, 95% CI, 1.12-1.81). When considering only patients receiving reperfusion within 3 hours, regardless of reperfusion strategy, differences in mortality (6.3% vs. 4%, p=0.094, for fibrinolysis or primary angioplasty, respectively; OR 0.87, 95% CI, 0.35-2.16) and in the combined secondary endpoint were no longer observed (12.9% vs 10.8%, p=0.33; OR 0.98, 95% CI, 0.58-1.64), and female sex was no longer a significant predictor of adverse outcomes. When performed 3 hours from symptom onset, fibrinolysis is safe and feasible, in terms of mortality and adverse outcomes, compared to primary angioplasty.
Resumo:
Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA expression, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract of the nadA promoter gene and contributes to the differential expression levels of phase variant promoters with different numbers of repeats, likely due to different spacing between operators. It is shown that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces nadA expression by inhibiting the DNA binding activity of the NadR repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants, which are likely due to differential RNA polymerase contacts leading to altered promoter activity. These results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, and both regulations are mediated by the NadR repressor that and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals.
Resumo:
The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.
Resumo:
The aim of this work was to investigate novel diagnostic and prognostic tools, postoperative treatments and epidemiologic factors impacting the outcome of surgical cases of colic. To make a more accurate diagnosis and establish a prognosis, several biomarkers have been investigated in colic patients. In this study we evaluated peritoneal PCT and blood ADMA and SDMA in SIRS positive and negative colic patients to be used as prognostic biomarkers. Our results highlighted the limits of these biomarkers in detection and the lack of specificity. In fact PCT was not detectable and even if ADMA and SDMA significantly increased in colic horses, they are not diagnostic nor prognostic markers for SIRS. Fluid therapy has been described to be crucial for the outcome of colic patients, nevertheless no guidelines have been established. Overhydration was the common practice in post surgical management. We compared cases with an extended fluid therapy protocol and cases with a restricted protocol. Results showed that survival rate and postoperative complications were similar between the groups, despite costs being significantly lower in the restricted group. The possible correlation between intestinal microbiota and colics has gained interest. In this study, cecal and colonic content from horses undergoing laparotomy were collected, and the microbiota analized. Results showed some differences in microbiota between discharged and non discharged patients, and between strangulating and non strangulating types of colic, that might suggest some influence of hind gut microbiota on the disease. A multicentric study involving three veterinary teaching hospitals on the italian territory was conducted investigating factors affecting postoperative survival and complications in colics. Results showed that the influence of age, PCV, TPP, blood lactate, reflux, type of disease, type of lesion, presence of anastomosis, duration of surgery and surgeons, were in line with literature. Amount of crystalloids used could affected the outcome.