3 resultados para Partially grouted masonry

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has focused on the study of the behavior and of the collapse of masonry arch bridges. The latest decades have seen an increasing interest in this structural type, that is still present and in use, despite the passage of time and the variation of the transport means. Several strategies have been developed during the time to simulate the response of this type of structures, although even today there is no generally accepted standard one for assessment of masonry arch bridges. The aim of this thesis is to compare the principal analytical and numerical methods existing in literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite Element Method is a numerical method, that uses different strategies of discretization to analyze the structure. Every method is applied to the case study through computer-based representations, that allow a friendly-use application of the principles explained. A particular closed-form approach based on an elasto-plastic material model and developed by some Belgian researchers is also studied. To compare the three methods, two different case study have been analyzed: i) a generic masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built on Savio River in Cesena. In the analyses performed, all the models are two-dimensional in order to have results comparable between the different methods taken in exam. The different methods have been compared with each other in terms of collapse load and of hinge positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheet pile walls are one of the oldest earth retention systems utilized in civil engineering projects. They are used for various purposes; such as excavation support system, cofferdams, cut-off walls under dams, slope stabilization, waterfront structures, and flood walls. Sheet pile walls are one of the most common types of quay walls used in port construction. The worldwide increases in utilization of large ships for transportation have created an urgent need of deepening the seabed within port areas and consequently the rehabilitation of its wharfs. Several methods can be used to increase the load-carrying capacity of sheet-piling walls. The use of additional anchored tie rods grouted into the backfill soil and arranged along the exposed wall height is one of the most practical and appropriate solutions adopted for stabilization and rehabilitation of the existing quay wall. The Ravenna Port Authority initiated a project to deepen the harbor bottom at selected wharves. An extensive parametric study through the finite element program, PLAXIS 2D, version 2012 was carried out to investigate the enhancement of using submerged grouted anchors technique on the load response of sheet-piling quay wall. The influence of grout-ties area, length of grouted body, anchor inclination and anchor location were considered and evaluated due to the effect of different system parameters. Also a comparative study was conducted by Plaxis 2D and 3D program to investigate the behavior of these sheet pile quay walls in terms of horizontal displacements induced along the sheet pile wall and ground surface settlements as well as the anchor force and calculated factor of safety. Finally, a comprehensive study was carried out by using different constitutive models to simulate the mechanical behavior of the soil to investigate the effect of these two models (Mohr-Coulomb and Hardening Soil) on the behavior of these sheet pile quay walls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.