7 resultados para Paramètres physico-chimiques
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Allostery is a phenomenon of fundamental importance in biology, allowing regulation of function and dynamic adaptability of enzymes and proteins. Despite the allosteric effect was first observed more than a century ago allostery remains a biophysical enigma, defined as the “second secret of life”. The challenge is mainly associated to the rather complex nature of the allosteric mechanisms, which manifests itself as the alteration of the biological function of a protein/enzyme (e.g. ligand/substrate binding at the active site) by binding of “other object” (“allos stereos” in Greek) at a site distant (> 1 nanometer) from the active site, namely the effector site. Thus, at the heart of allostery there is signal propagation from the effector to the active site through a dense protein matrix, with a fundamental challenge being represented by the elucidation of the physico-chemical interactions between amino acid residues allowing communicatio n between the two binding sites, i.e. the “allosteric pathways”. Here, we propose a multidisciplinary approach based on a combination of computational chemistry, involving molecular dynamics simulations of protein motions, (bio)physical analysis of allosteric systems, including multiple sequence alignments of known allosteric systems, and mathematical tools based on graph theory and machine learning that can greatly help understanding the complexity of dynamical interactions involved in the different allosteric systems. The project aims at developing robust and fast tools to identify unknown allosteric pathways. The characterization and predictions of such allosteric spots could elucidate and fully exploit the power of allosteric modulation in enzymes and DNA-protein complexes, with great potential applications in enzyme engineering and drug discovery.
Resumo:
This thesis reports an integrated analytical approach for the study of physicochemical and biological properties of new synthetic bile acid (BA) analogues agonists of FXR and TGR5 receptors. Structure-activity data were compared with those previous obtained using the same experimental protocols on synthetic and natural occurring BA. The new synthetic BA analogues are classified in different groups according also to their potency as a FXR and TGR5 agonists: unconjugated and steroid modified BA and side chain modified BA including taurine or glycine conjugates and pseudo-conjugates (sulphonate and sulphate analogues). In order to investigate the relationship between structure and activity the synthetic analogues where admitted to a physicochemical characterization and to a preliminary screening for their pharmacokinetic and metabolism using a bile fistula rat model. Sensitive and accurate analytical methods have been developed for the quali-quantitative analysis of BA in biological fluids and sample used for physicochemical studies. Combined High Performance Liquid Chromatography Electrospray tandem mass spectrometry with efficient chromatographic separation of all studied BA and their metabolites have been optimized and validated. Analytical strategies for the identification of the BA and their minor metabolites have been developed. Taurine and glycine conjugates were identified in MS/MS by monitoring the specific ion transitions in multiple reaction monitoring (MRM) mode while all other metabolites (sulphate, glucuronic acid, dehydroxylated, decarboxylated or oxo) were monitored in a selected-ion reaction (SIR) mode with a negative ESI interface by the following ions. Accurate and precise data where achieved regarding the main physicochemical properties including solubility, detergency, lipophilicity and albumin binding . These studies have shown that minor structural modification greatly affect the pharmacokinetics and metabolism of the new analogues in respect to the natural BA and on turn their site of action, particularly where their receptor are located in the enterohepatic circulation.
Resumo:
The macroscopic properties of oily food dispersions, such as rheology, mechanical strength, sensory attributes (e.g. mouth feel, texture and even flavour release) and as well as engineering properties are strongly determined by their microstructure, that is considered a key parameter in the understanding of the foods behaviour . In particular the rheological properties of these matrices are largely influenced by their processing techniques, particle size distribution and composition of ingredients. During chocolate manufacturing, mixtures of sugar, cocoa and fat are heated, cooled, pressurized and refined. These steps not only affect particle size reduction, but also break agglomerates and distribute lipid and lecithin-coated particles through the continuous phase, this considerably modify the microstructure of final chocolate. The interactions between the suspended particles and the continuous phase provide information about the existing network and consequently can be associated to the properties and characteristics of the final dispersions. Moreover since the macroscopic properties of food materials, are strongly determined by their microstructure, the evaluation and study of the microstructural characteristics, can be very important for a through understanding of the food matrices characteristics and to get detailed information on their complexity. The aim of this study was investigate the influence of formulation and each process step on the microstructural properties of: chocolate type model systems, dark milk and white chocolate types, and cocoa creams. At the same time the relationships between microstructural changes and the resulting physico-chemical properties of: chocolate type dispersions model systems dark milk and white chocolate were investigated.
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.
Resumo:
In this work, in-situ measurements of aerosol chemical composition, particle number size distribution, cloud-relevant properties and ground-based cloud observations were combined with high-resolution satellite sea surface chlorophyll-a concentration and air mass back-trajectory data to investigate the impact of the marine biota on aerosol physico-chemical and cloud properties. Studies were performed over the North-Eastern Atlantic Ocean, the central Mediterranean Sea, and the Arctic Ocean, by deploying both multi-year datasets and short-time scale observations. All the data were chosen to be representative of the marine atmosphere, reducing to a minimum any anthropogenic input. A relationship between the patterns of marine biological activity and the time evolution of marine aerosol properties was observed, under a variety of aspects, from chemical composition to number concentration and size distribution, up to the most cloud‐relevant properties. At short-time scales (1-2 months), the aerosol properties tend to respond to biological activity variations with a delay of about one to three weeks. This delay should be considered in model applications that make use of Chlorophyll-a to predict marine aerosol properties at high temporal resolution. The impact of oceanic biological activity on the microphysical properties of marine stratiform clouds is also evidenced by our analysis, over the Eastern North Atlantic Ocean. Such clouds tend to have a higher number of smaller cloud droplets in periods of high biological activity with respect to quiescent periods. This confirms the possibility of feedback interactions within the biota-aerosol-cloud climate system. Achieving a better characterization of the time and space relationships linking oceanic biological activity to marine aerosol composition and properties may significantly impact our future capability of predicting the chemical composition of the marine atmosphere, potentially contributing to reducing the uncertainty of future climate predictions, through a better understanding of the natural climate system.
Resumo:
In the agri-food sector, measurement and monitoring activities contribute to high quality end products. In particular, considering food of plant origin, several product quality attributes can be monitored. Among the non-destructive measurement techniques, a large variety of optical techniques are available, including hyperspectral imaging (HSI) in the visible/near-infrared (Vis/NIR) range, which, due to the capacity to integrate image analysis and spectroscopy, proved particularly useful in agronomy and food science. Many published studies regarding HSI systems were carried out under controlled laboratory conditions. In contrast, few studies describe the application of HSI technology directly in the field, in particular for high-resolution proximal measurements carried out on the ground. Based on this background, the activities of the present PhD project were aimed at exploring and deepening knowledge in the application of optical techniques for the estimation of quality attributes of agri-food plant products. First, research activities on laboratory trials carried out on apricots and kiwis for the estimation of soluble solids content (SSC) and flesh firmness (FF) through HSI were reported; subsequently, FF was estimated on kiwis using a NIR-sensitive device; finally, the procyanidin content of red wine was estimated through a device based on the pulsed spectral sensitive photometry technique. In the second part, trials were carried out directly in the field to assess the degree of ripeness of red wine grapes by estimating SSC through HSI, and finally a method for the automatic selection of regions of interest in hyperspectral images of the vineyard was developed. The activities described above have revealed the potential of the optical techniques for sorting-line application; moreover, the application of the HSI technique directly in the field has proved particularly interesting, suggesting further investigations to solve a variety of problems arising from the many environmental variables that may affect the results of the analyses.
Resumo:
In recent decades, the use of organic fertilizers has gained increasing interest mainly for two reasons: their ability to improve soil fertility and the need to find a sustainable alternative to mineral and synthetic fertilizers. In this context, sewage sludge is a useful organic matrix that can be successfully used in agriculture, due to its chemical composition rich in organic matter, nitrogen, phosphorus and other micronutrients necessary for plant growth. This work investigated three indispensable aspects (i.e., physico-chemical properties, agronomic efficiency and environmental safety) of sewage sludge application as organic fertilizer, emphasizing the role of tannery sludge. In a comparison study with municipal sewage sludge, results showed that the targeted analyses applied (total carbon and nitrogen content, isotope ratio of carbon and nitrogen, infrared spectroscopy and thermal analysis) were able to discriminate tannery sludge from municipal ones, highlighting differences in composition due to the origin of the wastewater and the treatment processes used in the plants. Regarding agronomic efficiency, N bioavailability was tested in a selection of organic fertilizers, including tannery sludge and tannery sludge-based fertilizers. Specifically, the hot-water extractable N has proven to be a good chemical indicator, providing a rapid and reliable indication of N bioavailability in soil. Finally, the behavior of oxybenzone (an emerging organic contaminant detected in sewage sludge) in soils with different physico-chemical properties was studied. Through adsorption and desorption experiments, it was found that the mobility of oxybenzone is reduced in soils rich in organic matter. Furthermore, through spectroscopic methods (e.g., infrared spectroscopy and surface-enhanced Raman spectroscopy) the mechanisms of oxybenzone-humic acids interaction were studied, finding that H-bonds and π-π stacking were predominantly present.