7 resultados para PROCESSING TECHNIQUE
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image recording, like any other acquisition system, are affected by non-idealities which, by different degrees, negatively impact on the accuracy of the recording. This work discusses how it is possible to attenuate, and ideally to remove, these effects, with a particular attention toward ultrasound imaging and extracellular recordings. Original algorithms developed during the Ph.D. research activity will be examined and compared to ones in literature tackling the same problems; results will be drawn on the base of comparative tests on both synthetic and in-vivo acquisitions, evaluating standard metrics in the respective field of application. All the developed algorithms share an adaptive approach to signal analysis, meaning that their behavior is not dependent only on designer choices, but driven by input signal characteristics too. Performance comparisons following the state of the art concerning image quality assessment, contrast gain estimation and resolution gain quantification as well as visual inspection highlighted very good results featured by the proposed ultrasound image deconvolution and restoring algorithms: axial resolution up to 5 times better than algorithms in literature are possible. Concerning extracellular recordings, the results of the proposed denoising technique compared to other signal processing algorithms pointed out an improvement of the state of the art of almost 4 dB.
Resumo:
A main objective of the human movement analysis is the quantitative description of joint kinematics and kinetics. This information may have great possibility to address clinical problems both in orthopaedics and motor rehabilitation. Previous studies have shown that the assessment of kinematics and kinetics from stereophotogrammetric data necessitates a setup phase, special equipment and expertise to operate. Besides, this procedure may cause feeling of uneasiness on the subjects and may hinder with their walking. The general aim of this thesis is the implementation and evaluation of new 2D markerless techniques, in order to contribute to the development of an alternative technique to the traditional stereophotogrammetric techniques. At first, the focus of the study has been the estimation of the ankle-foot complex kinematics during stance phase of the gait. Two particular cases were considered: subjects barefoot and subjects wearing ankle socks. The use of socks was investigated in view of the development of the hybrid method proposed in this work. Different algorithms were analyzed, evaluated and implemented in order to have a 2D markerless solution to estimate the kinematics for both cases. The validation of the proposed technique was done with a traditional stereophotogrammetric system. The implementation of the technique leads towards an easy to configure (and more comfortable for the subject) alternative to the traditional stereophotogrammetric system. Then, the abovementioned technique has been improved so that the measurement of knee flexion/extension could be done with a 2D markerless technique. The main changes on the implementation were on occlusion handling and background segmentation. With the additional constraints, the proposed technique was applied to the estimation of knee flexion/extension and compared with a traditional stereophotogrammetric system. Results showed that the knee flexion/extension estimation from traditional stereophotogrammetric system and the proposed markerless system were highly comparable, making the latter a potential alternative for clinical use. A contribution has also been given in the estimation of lower limb kinematics of the children with cerebral palsy (CP). For this purpose, a hybrid technique, which uses high-cut underwear and ankle socks as “segmental markers” in combination with a markerless methodology, was proposed. The proposed hybrid technique is different than the abovementioned markerless technique in terms of the algorithm chosen. Results showed that the proposed hybrid technique can become a simple and low-cost alternative to the traditional stereophotogrammetric systems.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
Perfusion CT imaging of the liver has potential to improve evaluation of tumour angiogenesis. Quantitative parameters can be obtained applying mathematical models to Time Attenuation Curve (TAC). However, there are still some difficulties for an accurate quantification of perfusion parameters due, for example, to algorithms employed, to mathematical model, to patient’s weight and cardiac output and to the acquisition system. In this thesis, new parameters and alternative methodologies about liver perfusion CT are presented in order to investigate the cause of variability of this technique. Firstly analysis were made to assess the variability related to the mathematical model used to compute arterial Blood Flow (BFa) values. Results were obtained implementing algorithms based on “ maximum slope method” and “Dual input one compartment model” . Statistical analysis on simulated data demonstrated that the two methods are not interchangeable. Anyway slope method is always applicable in clinical context. Then variability related to TAC processing in the application of slope method is analyzed. Results compared with manual selection allow to identify the best automatic algorithm to compute BFa. The consistency of a Standardized Perfusion Index (SPV) was evaluated and a simplified calibration procedure was proposed. At the end the quantitative value of perfusion map was analyzed. ROI approach and map approach provide related values of BFa and this means that pixel by pixel algorithm give reliable quantitative results. Also in pixel by pixel approach slope method give better results. In conclusion the development of new automatic algorithms for a consistent computation of BFa and the analysis and definition of simplified technique to compute SPV parameter, represent an improvement in the field of liver perfusion CT analysis.
Resumo:
In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.
Resumo:
In the present thesis, a new methodology of diagnosis based on advanced use of time-frequency technique analysis is presented. More precisely, a new fault index that allows tracking individual fault components in a single frequency band is defined. More in detail, a frequency sliding is applied to the signals being analyzed (currents, voltages, vibration signals), so that each single fault frequency component is shifted into a prefixed single frequency band. Then, the discrete Wavelet Transform is applied to the resulting signal to extract the fault signature in the frequency band that has been chosen. Once the state of the machine has been qualitatively diagnosed, a quantitative evaluation of the fault degree is necessary. For this purpose, a fault index based on the energy calculation of approximation and/or detail signals resulting from wavelet decomposition has been introduced to quantify the fault extend. The main advantages of the developed new method over existing Diagnosis techniques are the following: - Capability of monitoring the fault evolution continuously over time under any transient operating condition; - Speed/slip measurement or estimation is not required; - Higher accuracy in filtering frequency components around the fundamental in case of rotor faults; - Reduction in the likelihood of false indications by avoiding confusion with other fault harmonics (the contribution of the most relevant fault frequency components under speed-varying conditions are clamped in a single frequency band); - Low memory requirement due to low sampling frequency; - Reduction in the latency of time processing (no requirement of repeated sampling operation).
Resumo:
The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.