2 resultados para PRIMARY TOOTH DENTIN
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The primary aim was to evaluate the effect of 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC) on endogenous enzymatic activity within radicular dentin and push-out bond strength of adhesively luted fiber posts, at baseline and after artificial aging. Additionally, the effect of different cementation strategies on endogenous enzymatic activity and fiber post retention was evaluated. The experiment was carried out on extracted human teeth, following endodontic treatment and fiber post cementation. Three cementation strategies were performed: resin cement in combination with etch-and-rinse (EAR) adhesive system, with self-etch (SE) system and self-adhesive (SE) cement. Each of the mentioned strategies had a control and experimental (EDC) group in which root canal was irrigated with 0.3M EDC for 1 minute. The push-out bond strength test was performed 24h after cementation and after 40.000 thermocycles. In order to investigate the effect of EDC and different cementation strategies, in situ zymography analyses of the resin-dentin interfaces were conducted. Statistical analyses were conducted with the software Stata 12.0 (Stata Corp, College Station, Texas, USA) and the significance was set for p<0.05. The results of statistical analysis (ANOVA) showed that the variables “EDC”, “root region” and “artificial aging” significantly influenced fiber posts’ retention to root canal (p<0.05). The highest values were observed in coronal third. The mean values observed after artificial aging were lower when compared to baseline, however EDC was effective in preserving bond strength. The level of enzymatic activity varied between the groups and EDC had a beneficial effect on silencing the enzymatic activity. Within the limitations of the study, it was concluded that the choice of cementation strategy did not influence posts’ retention, while EDC contributed to the preservation of bond strength after artificial aging and reduced enzymatic activity within radicular dentin. In vivo trials are necessary to confirm the results of this in vitro study.
Resumo:
Objective: Lithium-silicate (LiSi) ceramic is nowadays widely used in dentistry. However, for the longevity of LiSi indirect restorations, it is important to pretreat the material and the dental substrate adequately. However, is not certain how the simplification of the manufacturing and conditioning procedures influences the bonding performances of LiSi ceramic restorations. Accordingly, the aims of this thesis were to investigate the effect of: 1) different LiSi ceramic surface decontamination procedures on the shear bond strength (SBS) to resin composite; 2) different types of lithium-disilicate (LiDi) (pressed vs CAD-CAM) on SBS to resin composite; 3) an experimental metal salt-based zirconium oxynitrate etchant [ZrO(NO3)2] on bonding performances to dentin. Materials and Methods: SBS test was used to investigate the influence of different cleaning protocols applied, or different processing techniques (CAD or PRESS) on the bond strength to composite resin. The third study tackled the interface between restorative materials and dentin, and investigated the microtensile bond strength test (µTBS), nanoleakage expression analysis (NL), gelatin zymography and in situ zymography of dentin conditioned with an experimental metal salt-based zirconium oxynitrate etchant [ZrO(NO3)2]. Results: MEP showed comparable bond strength to the double HP etching and higher compared to other groups. BS of press LiSi to composite was higher than that of CAD/CAM LiSi. ZON pretreatment increased bond strength to dentin when used with a universal adhesive, and inhibited dentinal endogenous enzymes. Conclusions: While simplification of the LiSi conditioning and cleaning procedures seems to yield bond strength comparable to the traditional procedures, it could be recommended in the clinical practice. However, pressed LiSi still seems to perform better in terms of bond strength compared to the CAD/CAM LiSi. Further, the novel ZON etchant seems to perform better compared to the traditional phosphoric dentin etching.