6 resultados para PRESSURE VOLUMETRIC PROPERTIES
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this PhD thesis was to evaluate the effect of a sub-lethal HPH treatment on some probiotic properties and on cell response mechanisms of already-known functional strains, isolated from Argentinean dairy products. The results achieved showed that HPH treatments, performed at a sub-lethal level of 50 MPa, increased some important functional and technological characteristics of the considered non intestinal probiotic strains. In particular, HPH could modify cell hydrophobicity, autoaggregation and resistance to acid gastric conditions (tested in in vitro model), cell viability and cell production of positive aroma compounds, during a refrigerate storage in a simulated dairy product. In addition, HPH process was able to increase also some probiotic properties exerted in vivo and tested for two of the considered strains. In fact, HPH-treated cells were able to enhance the number of IgA+ cells more than other not treated cells, although this capacity was time dependent. On the other hand, HPH treatment was able to modify some important characteristics that are linked to the cell wall and, consequently, could alter the adhesion capacity in vivo and the interaction with the intestinal cells. These modifications, involving cell outermost structures, were highlighted also by Trasmission Electron Microscopy (TEM) analysis. In fact, the micrographs obtained showed a significant effect of the pressure treatment on the cell morphology and particularly on the cell wall. Moreover, the results achieved showed that composition of plasma membranes and their level of unsaturation are involved in response mechanisms adopted by cells exposed to the sub-lethal HPH treatment. Although the response to the treatment varied according to the characteristics of individual strains, time of storage and suspension media employed, the results of present study, could be exploited to enhance the quality of functional products and to improve their organoleptic properties.
Resumo:
I have studied entropy profiles obtained in a sample of 24 X-ray objects at high redshift retrieved from the Chandra archive. I have discussed the scaling properties of the entropy S, the correlation between metallicity Z and S, the profiles of the temperature of the gas, Tgas, and performed a comparison between the dark matter 'temperature' and Tgas in order to constrain the non-gravitational processes which affect the thermal history of the gas. Furthermore I have studied the scaling relations between the X-ray quantities and Sunyaev Zel'dovich measurements. I have observed that X-ray laws are steeper than the relations predicted from the adiabatic model. These deviations from expectations based on self-similarity are usually interpreted in terms of feedback processes leading to non-gravitational gas heating, and suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model. I have also investigated a Bayesian X-ray and Sunyaev Zel'dovich analysis, which allows to study the external regions of the clusters well beyond the volumes resolved with X-ray observations (1/3-1/2 of the virial radius), to measure the deprojected physical cluster properties, like temperature, density, entropy, gas mass and total mass up to the virial radius.
Resumo:
Nanofiltration (NF) is a pressure-driven membrane process, intermediate between reverse osmosis and ultrafiltration. Commercially available polymeric membranes have been used in a wide range of applications, such as drinking, process industry and waste water treatment. For all the applications requiring high stability and harsh washing procedures inorganic membranes are preferred due to their high chemical inertia. Typically, γ – Al2O3 as well as TiO2 and ZrO2 selective layers are used; the latter show higher chemical stability in a wide range of pH and temperatures. In this work the experimental characterization of two different type of membrane has been performed in order to investigate permeation properties, separation performance and efficiency with aqueous solutions containing strong inorganic electrolytes. The influence of salt concentration and feed pH as well as the role of concentration polarization and electrolyte type on the membrane behavior are investigated. Experimentation was performed testing a multi–layer structured NF membrane in α-Al2O3, TiO2 and ZrO2, and a polymeric membrane, in polyamide supported on polysulfone, with binary aqueous solutions containing NaCl, Na2SO4 or CaCl2; the effect of salt composition and pH in the feed side was studied both on flux and salt rejection. All the NF experimental data available for the two membranes were used to evaluate the volumetric membrane charge (X) corresponding to each operative conditions investigated, through the Donnan Steric Pore Model and Dielectric Exclusion (DSPM&DE). The results obtained allow to understand which are the main phenomena at the basis of the different behaviors observed.
Resumo:
The use of atmospheric pressure plasmas for thin film deposition on thermo-sensitive materials is currently one of the main challenges of the plasma scientific community. Despite the growing interest in this field, the existing knowledge gap between gas-phase reaction mechanisms and thin film properties is still one of the most important barriers to overcome for a complete understanding of the process. In this work, thin films surface characterization techniques, combined with passive and active gas-phase diagnostic methods, were used to provide a comprehensive study of the Ar/TEOS deposition process assisted by an atmospheric pressure plasma jet. SiO2-based thin films exhibiting a well-defined chemistry, a good morphological structure and high uniformity were studied in detail by FTIR, XPS, AFM and SEM analysis. Furthermore, non-intrusive spectroscopy techniques (OES, filter imaging) and laser spectroscopic methods (Rayleigh scattering, LIF and TALIF) were employed to shed light on the complexity of gas-phase mechanisms involved in the deposition process and discuss the influence of TEOS admixture on gas temperature, electron density and spatial-temporal behaviours of active species. The poly-diagnostic approach proposed in this work opens interesting perspectives both in terms of process control and optimization of thin film performances.
Resumo:
In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.
Excitonic properties of transition metal oxide perovskites and workflow automatization of GW schemes
Resumo:
The Many-Body-Perturbation Theory approach is among the most successful theoretical frameworks for the study of excited state properties. It allows to describe the excitonic interactions, which play a fundamental role in the optical response of insulators and semiconductors. The first part of the thesis focuses on the study of the quasiparticle, optical and excitonic properties of \textit{bulk} Transition Metal Oxide (TMO) perovskites using a G$_0$W$_0$+Bethe Salpeter Equation (BSE) approach. A representative set of 14 compounds has been selected, including 3d, 4d and 5d perovskites. An approximation of the BSE scheme, based on an analytic diagonal expression for the inverse dielectric function, is used to compute the exciton binding energies and is carefully bench-marked against the standard BSE results. In 2019 an important breakthrough has been achieved with the synthesis of ultrathin SrTiO3 films down to the monolayer limit. This allows us to explore how the quasiparticle and optical properties of SrTiO3 evolve from the bulk to the two-dimensional limit. The electronic structure is computed with G0W0 approach: we prove that the inclusion of the off-diagonal self-energy terms is required to avoid non-physical band dispersions. The excitonic properties are investigated beyond the optical limit at finite momenta. Lastly a study of the under pressure optical response of the topological nodal line semimetal ZrSiS is presented, in conjunction with the experimental results from the group of Prof. Dr. Kuntscher of the Augsburg University. The second part of the thesis discusses the implementation of a workflow to automate G$_0$W$_0$ and BSE calculations with the VASP software. The workflow adopts a convergence scheme based on an explicit basis-extrapolation approach [J. Klimeš \textit{et al.}, Phys. Rev.B 90, 075125 (2014)] which allows to reduce the number of intermediate calculations required to reach convergence and to explicit estimate the error associated to the basis-set truncation.