7 resultados para PREDICTION METHOD

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims: Sorafenib is the reference therapy for advanced Hepatocellular Carcinoma (HCC). No method exists to predict in the very early period subsequent individual response. Starting from the clinical experience in humans that subcutaneous metastases may rapidly change consistency under sorafenib and that elastosonography a new ultrasound based technique allows assessment of tissue stiffness, we investigated the role of elastonography in the very early prediction of tumor response to sorafenib in a HCC animal model. Methods: HCC (Huh7 cells) subcutaneous xenografting in mice was utilized. Mice were randomized to vehicle or treatment with sorafenib when tumor size was 5-10 mm. Elastosonography (Mylab 70XVG, Esaote, Genova, Italy) of the whole tumor mass on a sagittal plane with a 10 MHz linear transducer was performed at different time points from treatment start (day 0, +2, +4, +7 and +14) until mice were sacrified (day +14), with the operator blind to treatment. In order to overcome variability in absolute elasticity measurement when assessing changes over time, values were expressed in arbitrary units as relative stiffness of the tumor tissue in comparison to the stiffness of a standard reference stand-off pad lying on the skin over the tumor. Results: Sor-treated mice showed a smaller tumor size increase at day +14 in comparison to vehicle-treated (tumor volume increase +192.76% vs +747.56%, p=0.06). Among Sor-treated tumors, 6 mice showed a better response to treatment than the other 4 (increase in volume +177% vs +553%, p=0.011). At day +2, median tumor elasticity increased in Sor-treated group (+6.69%, range –30.17-+58.51%), while decreased in the vehicle group (-3.19%, range –53.32-+37.94%) leading to a significant difference in absolute values (p=0.034). From this time point onward, elasticity decreased in both groups, with similar speed over time, not being statistically different anymore. In Sor-treated mice all 6 best responders at day 14 showed an increase in elasticity at day +2 (ranging from +3.30% to +58.51%) in comparison to baseline, whereas 3 of the 4 poorer responders showed a decrease. Interestingly, these 3 tumours showed elasticity values higher than responder tumours at day 0. Conclusions: Elastosonography appears a promising non-invasive new technique for the early prediction of HCC tumor response to sorafenib. Indeed, we proved that responder tumours are characterized by an early increase in elasticity. The possibility to distinguish a priori between responders and non responders based on the higher elasticity of the latter needs to be validated in ad-hoc experiments as well as a confirmation of our results in humans is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.