6 resultados para POWER PLANTS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The safety systems of nuclear power plants rely on low-voltage power, instrumentation and control cables. Inside the containment area, cables operate in harsh environments, characterized by relatively high temperature and gamma-irradiation. As these cables are related to fundamental safety systems, they must be able to withstand unexpected accident conditions and, therefore, their condition assessment is of utmost importance as plants age and lifetime extensions are required. Nowadays, the integrity and functionality of these cables are monitored mainly through destructive test which requires specific laboratory. The investigation of electrical aging markers which can provide information about the state of the cable by non-destructive testing methods would improve significantly the present diagnostic techniques. This work has been made within the framework of the ADVANCE (Aging Diagnostic and Prognostics of Low-Voltage I\&C Cables) project, a FP7 European program. This Ph.D. thesis aims at studying the impact of aging on cable electrical parameters, in order to understand the evolution of the electrical properties associated with cable degradation. The identification of suitable aging markers requires the comparison of the electrical property variation with the physical/chemical degradation mechanisms of polymers for different insulating materials and compositions. The feasibility of non-destructive electrical condition monitoring techniques as potential substitutes for destructive methods will be finally discussed studying the correlation between electrical and mechanical properties. In this work, the electrical properties of cable insulators are monitored and characterized mainly by dielectric spectroscopy, polarization/depolarization current analysis and space charge distribution. Among these techniques, dielectric spectroscopy showed the most promising results; by means of dielectric spectroscopy it is possible to identify the frequency range where the properties are more sensitive to aging. In particular, the imaginary part of permittivity at high frequency, which is related to oxidation, has been identified as the most suitable aging marker based on electrical quantities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increase in environmental and healthy concerns, combined with the possibility to exploit waste as a valuable energy resource, has led to explore alternative methods for waste final disposal. In this context, the energy conversion of Municipal Solid Waste (MSW) in Waste-To-Energy (WTE) power plant is increasing throughout Europe, both in terms of plants number and capacity, furthered by legislative directives. Due to the heterogeneous nature of waste, some differences with respect to a conventional fossil fuel power plant have to be considered in the energy conversion process. In fact, as a consequence of the well-known corrosion problems, the thermodynamic efficiency of WTE power plants typically ranging in the interval 25% ÷ 30%. The new Waste Framework Directive 2008/98/EC promotes production of energy from waste introducing an energy efficiency criteria (the so-called “R1 formula”) to evaluate plant recovery status. The aim of the Directive is to drive WTE facilities to maximize energy recovery and utilization of waste heat, in order to substitute energy produced with conventional fossil fuels fired power plants. This calls for novel approaches and possibilities to maximize the conversion of MSW into energy. In particular, the idea of an integrated configuration made up of a WTE and a Gas Turbine (GT) originates, driven by the desire to eliminate or, at least, mitigate limitations affecting the WTE conversion process bounding the thermodynamic efficiency of the cycle. The aim of this Ph.D thesis is to investigate, from a thermodynamic point of view, the integrated WTE-GT system sharing the steam cycle, sharing the flue gas paths or combining both ways. The carried out analysis investigates and defines the logic governing plants match in terms of steam production and steam turbine power output as function of the thermal powers introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il presente lavoro trae origine dagli obiettivi e dalle relative misure applicative della riforma dell’OCM zucchero del 2006 e nello specifico dal Piano nazionale per la razionalizzazione e riconversione della produzione bieticolo-saccarifera approvato dal MIPAF nel 2007. Lo studio riguarda la riconversione dello zuccherificio di Finale Emilia (MO), di appartenenza del Gruppo bieticolo-saccarifero Co.Pro.B, in un impianto di generazione di energia elettrica e termica che utilizza biomassa di origine agricola per la combustione diretta. L'alimentazione avviene principalmente dalla coltivazione dedicata del sorgo da fibra (Sorghum bicolor), integrata con risorse agro-forestali. Lo studio mostra la necessità di coltivazione di 4.400 ettari di sorgo da fibra con una produzione annua di circa 97.000 t di prodotto al 75% di sostanza secca necessari per l’alimentazione della centrale a biomassa. L’obiettivo é quello di valutare l’impatto della nuova coltura energetica sul comprensorio agricolo e sulla economia dell’impresa agricola. La metodologia adottata si basa sulla simulazione di modelli aziendali di programmazione lineare che prevedono l’inserimento del sorgo da fibra come coltura energetica nel piano ottimo delle aziende considerate. I modelli predisposti sono stati calibrati su aziende RICA al fine di riprodurre riparti medi reali su tre tipologie dimensionali rappresentative: azienda piccola entro i 20 ha, media da 20 a 50 ha e grande oltre i 50 ha. La superficie di entrata a livello aziendale, se rapportata alla rappresentatività delle aziende dell’area di studio, risulta insufficiente per soddisfare la richiesta di approvvigionamento dell’impianto a biomassa. Infatti con tale incremento la superficie di coltivazione nel comprensorio si attesta sui 2.500 ettari circa contro i 4.400 necessari alla centrale. Lo studio mostra pertanto che occorre un incentivo superiore, di circa 80-90 €/ha, per soddisfare la richiesta della superficie colturale a livello di territorio. A questi livelli, la disponibilità della coltura energetica sul comprensorio risulta circa 9.500 ettari.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.