2 resultados para POUCH-ANAL ANASTOMOSIS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
La fistola anastomotica è una delle complicanze più temute nella chirurgia colo-rettale. Le anastomosi colo-rettali basse , le colo-anali e le pouch anali hanno un rischio più elevato di sviluppare una fistola anastomotica . La terapia endoluminale a pressione negativa (Endosponge®) è stata proposta come strategia di trattamento, tuttavia, la tempistica migliore in cui attuare la procedura rimane ancora poco definita. Lo scopo dello studio è confrontare i risultati ottenuti con l'Endosponge® come trattamento di prima linea rispetto a quelli in cui è stato applicato a seguito del fallimento di ulteriori trattamenti. Lo studio retrospettivo monocentrico ha incluso pazienti con fistola anastomotica trattati con Endosponge® in un periodo di tempo compreso tra novembre 2019 e novembre 2022. L'Endosponge® è stato applicato come prima linea o come salvataggio. Il dispositivo è stato applicato nella sede della deiscenza e periodicamente sostituito fino alla guarigione. La risoluzione del leak anastomotico è stata confermata con esame endoscopico. Dei 25 pazienti inclusi, 9 sono stati sottoposti a Endosponge® come trattamento di prima linea, mentre 16 sono stati sottoposti a Endosponge® di salvataggio. La deiscenza anastomotica è stata diagnosticata dopo un intervallo di tempo mediano di 14 giorni (range 10-413) nel primo gruppo e di 38 giorni (range 11-362) nel secondo (p=0,82). L'Endosponge® è stato applicato dopo 7 giorni (range 1-60) dalla diagnosi di fistola anastomotica nel primo gruppo e dopo 76 giorni (range 6-780) nel secondo gruppo (p=0,058). La risoluzione della fistola anastomotica è stata ottenuta in una percentuale di casi maggiore nel primo gruppo rispetto al secondo 88,9% vs 37,6% (p =0,033). Lo studio conferma l'efficacia dell'Endosponge® nel trattamento delle fistole anastomotiche colorettali basse quando utilizzato precocemente e come trattamento di prima linea.
Resumo:
Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold