5 resultados para POSITIONAL FEM FORMULATION

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation of vaccine adjuvant are represented by a wide ranging set of molecules called Toll like agonists (TLR’s). Although many of these molecules are complex structures extracted from microorganisms, small molecule TLR agonists have also been identified. However, delivery systems have not been optimized to allow their effective delivery in conjunction with antigens. Here we describe a novel approach in which a small molecule TLR agonist has been conjugated directly to antigens to ensure effective co delivery. We describe the conjugation of a relevant protein, a recombinant protective antigen from S.pneumoniae (RrgB), which is linked to a TLR7 agonist. Following thorough characterization to ensure there was no aggregation, the conjugate was evaluated in a murine infection model. Results showed that the conjugate extended animals’ survival after lethal challenge with S.pneumoniae. Comparable results were obtained with a 10 fold lower dose than that of the native unconjugated antigen. Notably, the animals immunized with the same dose of unconjugated TLR7 agonist and antigen showed no adjuvant effect. The increased immunogenicity was likely a consequence of the co-localization of TLR7 agonist and antigen by chemical binding and is was more effective than simple co-administration. Likely, this approach can be adopted to reduce the dose of antigen required to induce protective immunity, and potentially increase the safety of a broad variety of vaccine candidates

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein silk fibroin (SF) from the silkworm Bombyx mori is a FDA-approved biomaterial used over centuries as sutures wire. Importantly, several evidences highlighted the potential of silk biomaterials obtained by using so-called regenerated silk fibroin (RSF) in biomedicine, tissue engineering and drug delivery. Indeed, by a water-based protocol, it is possible to obtain protein water-solution, by extraction and purification of fibroin from silk fibres. Notably, RSF can be processed in a variety of biomaterials forms used in biomedical and technological fields, displaying remarkable properties such as biocompatibility, controllable biodegradability, optical transparency, mechanical robustness. Moreover, RSF biomaterials can be doped and/or chemical functionalized with drugs, optically active molecules, growth factors and/or chemicals In this view, activities of my PhD research program were focused to standardize the process of extraction and purification of protein to get the best physical and chemical characteristics. The analysis of the chemo-physical properties of the fibroin involved both the RSF water-solution and the protein processed in film. Chemo-physical properties have been studied through: vibrational (FT-IR and Raman-FT) and optical (absorption and emission UV-VIS) spectroscopy, nuclear magnetic resonance (1H and 13C NMR), thermal analysis and thermo-gravimetric scan (DSC and TGA). In the last year of my PhD, activities were focused to study and define innovative methods of functionalization of the silk fibroin solution and films. Indeed, research program was the application of different methods of manufacturing approaches of the films of fibroin without the use of harsh treatments and organic solvents. New approaches to doping and chemical functionalization of the silk fibroin were studied. Two different methods have been identified: 1) biodoping that consists in the doping of fibroin with optically active molecules through the addition of fluorescent molecules in the standard diet used for the breeding of silkworms; 2) chemical functionalization via silylation.