4 resultados para POLY(GAMMA-BENZYL L-GLUTAMATE)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of bone is needed for high bone loss due to congenital deformities, trauma or neoplastic diseases. Commonly, orthopaedic surgical treatments are autologus or allogenic bone implant or prosthetic implant. A choice to the traditional approaches could be represented by tissue engineering that use cells (and/or their products) and innovative biomaterials to perform bone substitutes biologically active as an alternative to artificial devices. In the last years, there was a wide improvement in biology on stem cells potential research and in biomedical engineering through development of new biomaterials designed to resemble the physiological tissues. Tissue engineering strategies and smart materials aim together to stimulate in vivo bone regeneration. This approaches drive at restore not only structure integrity and/or function of the original tissue, but also to induce new tissue deposition in situ. An intelligent bone substitute is now designed like not only a scaffold but also as carrier of regeneration biomolecular signals. Biomimetics has helped to project new tissue engineered devices to simulate the physiological substrates architecture, such extracellular matrix (ECM), and molecular signals that drive the integration at the interface between pre-existing tissue and scaffold. Biomimetic strategies want to increase the material surface biological activity with physical modifications (topography) o chemical ones (adhesive peptides), to improve cell adhesion to material surface and possibly scaffold colonization. This study evaluated the effects of biomimetic modifications of surgical materials surface, as poly-caprolattone (PCL) and titanium on bone stem cells behaviour in a marrow experimental model in vitro. Two biomimetic strategies were analyzed; ione beam irradiation, that changes the surface roughness at the nanoscale, and surface functionalization with specific adhesive peptides or Self Assembled Monolayers (SAMs). These new concept could be a mean to improve the early (cell adhesion, spreading..) and late phases (osteoblast differentiation) of cell/substrate interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il progetto di ricerca si situa nell’ambito dell’informatica giudiziaria settore che studia i sistemi informativi implementati negli uffici giudiziari allo scopo di migliorare l’efficienza del servizio, fornire una leva per la riduzione dei lunghi tempi processuali, al fine ultimo di garantire al meglio i diritti riconosciuti ai cittadini e accrescere la competitività del Paese. Oggetto di studio specifico del progetto di ricerca è l’utilizzo delle ICT nel processo penale. Si tratta di una realtà meno studiata rispetto al processo civile, eppure la crisi di efficienza del processo non è meno sentita in tale area: l’arretrato da smaltire al 30 giugno del 2011 è stato quantificato in 3,4 milioni di processi penali, e il tempo medio di definizione degli stessi è di quattro anni e nove mesi. Guardare al processo penale con gli occhi della progettazione dei sistemi informativi è vedere un fluire ininterrotto di informazioni che include realtà collocate a monte e a valle del processo stesso: dalla trasmissione della notizia di reato alla esecuzione della pena. In questa prospettiva diventa evidente l’importanza di una corretta gestione delle informazioni: la quantità, l’accuratezza, la rapidità di accesso alle stesse sono fattori così cruciali per il processo penale che l’efficienza del sistema informativo e la qualità della giustizia erogata sono fortemente interrelate. Il progetto di ricerca è orientato a individuare quali siano le condizioni in cui l’efficienza può essere effettivamente raggiunta e, soprattutto, a verificare quali siano le scelte tecnologiche che possono preservare, o anche potenziare, i principi e le garanzie del processo penale. Nel processo penale, infatti, sono coinvolti diritti fondamentali dell’individuo quali la libertà personale, la dignità, la riservatezza, diritti fondamentali che vengono tutelati attraverso un ampia gamma di diritti processuali quali la presunzione di innocenza, il diritto di difesa, il diritto al contraddittorio, la finalità di rieducazione della pena.