2 resultados para PHOSPHOLIPIDS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The experiments described in the thesis for my PhD were addressed to the study of the anticancer activity of a conjugate of doxorubicin (DOXO) with lactosaminated human albumin (L-HSA) on hepatocellular carcinomas (HCCs) induced in rats by diethylnitrosamine. L-HSA is a neoglycoprotein exposing galactosyl residues. The conjugate was prepared to improve the chemo therapeutic index of DOXO in the treatment of the well differentiated (WD) HCCs whose cells mantain the receptor for galactosyl terminating glycoproteins and consequently can actively internalize L-HSA. In my first experiments I found that L-HSA coupled DOXO produced concentrations of DOXO higher than those raised by an equal dose of free drug, not only in WD HCCs, but also in the poorly differentiated forms (PD) of these tumors which do no express the receptor for galactosyl terminating glycoproteins. Subsequently I provided evidence that penetration of L-HSA-DOXO in PD HCCs was due to a non-specific adsorption mediated by the DOXO residues of the conjugate which interact with the cell surface mainly because at physiological pH they are positively charged and bind to anionic phospholipids of the cell membrane. In subsequent experiments, by ultrasound technique, I studied the action of free and L-HSA coupled DOXO on the growth of rat HCCs. I found that L-HSA coupled DOXO hindered the development of new neoplastic nodules and inhibited the growth of the established tumors. In contrast, the free drug neither inhibited the development of HCCs nor prevented the growth of the established tumors. Moreover, the free drug produced a severe loss of weight of rats, a sign of severe toxicity, which was not caused by the conjugate. In conclusion assuming that the results obtained in rats can be applied to patients, the results of my thesis suggest that the conjugate by increasing the efficacy and tolerability of DOXO could improve the value of this drug in the treatment of human HCCs.
Resumo:
Evidence accumulated in the last ten years has demonstrated that a large proportion of the mitochondrial respiratory chain complexes in a variety of organisms is arranged in supramolecular assemblies called supercomplexes or respirasomes. Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. Following this line of thought we have decided to directly investigate ROS production by Complex I under conditions in which the complex is arranged as a component of the supercomplex I1III2 or it is dissociated as an individual enzyme. The study has been addressed both in bovine heart mitochondrial membranes and in reconstituted proteoliposomes composed of complexes I and III in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. The results of this investigation provide experimental evidence that the production of ROS is strongly increased in either model; supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I . This is the first demonstration that dissociation of the supercomplex I1III2 in the mitochondrial membrane is a cause of oxidative stress from Complex I. Previous work in our laboratory demonstrated that lipid peroxidation can dissociate the supramolecular assemblies; thus, here we confirm that preliminary conclusion that primary causes of oxidative stress may perpetuate reactive oxygen species (ROS) generation by a vicious circle involving supercomplex dissociation as a major determinant.