9 resultados para PHOSPHO-SPECIFIC ANTIBODIES

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The obligate intracellular pathogen Chlamydia trachomatis is a gram negative bacterium which infects epithelial cells of the reproductive tract. C. trachomatis is the leading cause of bacterial sexually transmitted disease worldwide and a vaccine against this pathogen is highly needed. Many evidences suggest that both antigen specific-Th1 cells and antibodies may be important to provide protection against Chlamydia infection. In a previous study we have identified eight new Chlamydia antigens inducing CD4-Th1 and/or antibody responses that, when combined properly, can protect mice from Chlamydia infection. However, all selected recombinant antigens, upon immunization in mice, elicited antibodies not able to neutralize Chlamydia infectivity in vitro. With the aim to improve the quality of the immune response by inducing effective neutralizing antibodies, we used a novel delivery system based on the unique capacity of E. coli Outer Membrane Vesicles (OMV) to present membrane proteins in their natural composition and conformation. We have expressed Chlamydia antigens, previously identified as vaccine candidates, in the OMV system. Among all OMV preparations, the one expressing HtrA Chlamydia antigen (OMV-HtrA), showed to be the best in terms of yield and quantity of expressed protein, was used to produce mice immune sera to be tested in neutralization assay in vitro. We observed that OMV-HtrA elicited specific antibodies able to neutralize efficiently Chlamydia infection in vitro, indicating that the presentation of the antigens in their natural conformation is crucial to induce an effective immune response. This is one of the first examples in which antibodies directed against a new Chlamydia antigen, other than MOMP (the only so far known antigen inducing neutralizing antibodies), are able to block the Chlamydia infectivity in vitro. Finally, by performing an epitope mapping study, we investigated the specificity of the antibody response induced by the recombinant HtrA and by OMV-HtrA. In particular, we identified some linear epitopes exclusively recognized by antibodies raised with the OMV-HtrA system, detecting in this manner the antigen regions likely responsible of the neutralizing effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD99 is a 32 kDa transmembrane protein whose high expression characterizes Ewing sarcoma (ES), a very aggressive pediatric bone tumor. In addition to its diagnostic value, CD99 has therapeutic potential since it leads to rapid and massive ES cell death when engaged with specific antibodies. Here a novel mechanism of cell death triggered via CD99 is shown, leading, ultimately, to the appearance of macropinocytotic vescicles. Anti-CD99 mAb 0662 induces MDM2 ubiquitination and degradation, which causes not only a p53 reactivation but also the IGF-1R induction and its subsequent internalization; CD99 results internalized together with IGF-1R inside endosomes, but then the two molecules display a different sorting: CD99 is degraded, while IGF-1R is recycled on the surface, causing, as a final step, the up-regulation of RAS-MAPK. High-expressing CD99 mesenchymal stem cells show mild Ras induction but no p53 activation and escape cell death, but in presence of EWS/FLI1 mesenchymal stem cells expressing CD99 show a stronger Ras induction and a p53 reactivation, leading to a significant cell death rate. We propose that CD99 triggering in a EWS/FLI1-driven oncogenetic context creates a synergy between RAS upregulation and p53 activation in ES cells, leading to cell death. Moreover, our data rule out possible concerns on toxicity related to the broad CD99 expression in normal tissues and provide the rationale for the therapeutic use of anti-CD99 MAbs in the clinic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional morphological examinations are not anymore sufficient for a complete evaluation of tumoral tissue and the use of neoplastic markers is of utmost importance. Neoplastic markers can be classified in: diagnostic, prognostic and predictive markers. Three markers were analyzed. 1) Insulin-like growth factor binding protein 2 (IGFBP2) was immunohistochemically examined in prostatic tissues: 40 radical prostatectomies from hormonally untreated patients with their preoperative biopsies, 10 radical prostatectomies from patients under complete androgen ablation before surgery and 10 simple prostatectomies from patients with bladder outlet obstruction. Results were compared with α-methylacyl-CoA racemase (AMACR). IGFBP2 was expressed in the cytoplasm of untreated adenocarcinomas and, to a lesser extent, in HG-PIN; the expression was markedly lower in patients after complete androgen ablation. AMACR was similarly expressed in both adenocarcinoma and HG-PIN, the level being similar in both lesions; the expression was slightly lower in patients after complete androgen ablation. IGFBP2 may be used a diagnostic marker of prostatic adenocarcinomas. 2) Heparan surface proteoglycan immunohistochemical expression was examined in 150 oral squamous cell carcinomas. Follow up information was available in 93 patients (range: 6-34 months, mean: 19±7). After surgery, chemotherapy was performed in 8 patients and radiotherapy in 61 patients. Multivariate and univariate overall survival analyses showed that high expression of syndecan-1 (SYN-1) was associated with a poor prognosis. In patients treated with radiotherapy, such association was higher. SYN-1 is a prognostic marker in oral squamous cell carcinomas; it may also represent a predictive factor for responsiveness to radiotherapy. 3) EGFR was studied in 33 pulmonary adenocarcinomas with traditional DNA sequencing methods and with two mutation-specific antibodies. Overall, the two antibodies had 61.1% sensitivity and 100% specificity in detecting EGFR mutations. EGFR mutation-specific antibodies may represent a predictive marker to identify patients candidate to tyrosine kinase inhibitors therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus aureus is a Gram positive pathogen that causes various human infections and represents one of the most common causes of bacteremia. S. aureus is able to invade a variety of non-professional phagocytes and that can survive engulfment by neutrophils, producing both secreted and surface components that compromise innate immune responses. In the contest of our study we evaluated the functional activity of vaccine specific antibodies by opsonophagocytosis killing assay (OPKA). Interestingly a low level of killing of the staphylococcal cells has been observed. In the meanwhile intracellular survival studies showed that S. aureus persisted inside phagocytes for several hours until a burst of growth after 5 hours in the supernatant. These data suggest that the strong ability of S. aureus to survive in the phagocytes could be the cause of the low killing measured by OPKA. Moreover parallel studies on HL-60 cells infected with S. aureus done by using transmission electron microscopy (TEM) interestingly showed that staphylococcal cells have an intracellular localization (endosomal vacuoles) and that they are able not only to maintain the integrity of their membrane but also to replicate inside vacuolar compartments. Finally in order to generate 3D volume of whole bacteria when present inside neutrophilic vacuoles, we collected a series of tomographic two-dimensional (2D) images by using a transmission electron microscope, generating 5 different tomograms. The three-dimensional reconstruction reveals the presence of intact bacteria within neutrophil vacuoles. The S. aureus membrane appears completely undamaged and integral in contrast with the physiological process of phagosytosis through vacuoles progression. S. aureus bacteria show a homogenous distribution of the density in all the three dimensions (X, Y, Z). All these evidences definitely explain the ability of the pathogen to survive inside the endosomal vacuoles and should be the cause of the low killing level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La distrofia muscolare di Emery-Dreifuss (EDMD) è una miopatia degenerativa ereditaria caratterizzata da debolezza e atrofia dei muscoli senza coinvolgimento del sistema nervoso. Individui EDMD presentano, inoltre, cardiomiopatia con difetto di conduzione che provoca rischio di morte improvvisa. Diversi studi evidenziano un coinvolgimento di citochine in diverse distrofie muscolari causanti infiammazione cronica, riassorbimento osseo, necrosi cellulare. Abbiamo effettuato una valutazione simultanea della concentrazione di citochine, chemochine, fattori di crescita, presenti nel siero di un gruppo di 25 pazienti EDMD. L’analisi effettuata ha evidenziato un aumento di citochine quali IL-17, TGFβ2, INF-γ e del TGFβ1. Inoltre, una riduzione del fattore di crescita VEGF e della chemochina RANTES è stata rilevata nel siero dei pazienti EDMD rispetto ai pazienti controllo. Ulteriori analisi effettuate tramite saggio ELISA hanno evidenziato un aumento dei livelli di TGFβ2 e IL-6 nel terreno di coltura di fibroblasti EDMD2. Per testare l’effetto nei muscoli, di citochine alterate, abbiamo utilizzato terreno condizionante di fibroblasti EDMD per differenziare mioblasti murini C2C12. Una riduzione del grado di differenziamento è stata osservata nei mioblasti condizionati con terreno EDMD. Trattando queste cellule con anticorpi neutralizzanti contro TGFβ2 e IL-6 si è avuto un miglioramento del grado di differenziamento. In C2C12 che esprimevano la mutazione H222P del gene Lmna,non sono state osservate alterazioni di citochine e benefici di anticorpi neutralizzanti. I dati mostrano un effetto patogenetico delle citochine alterate come osservato in fibroblasti e siero di pazienti, suggerendo un effetto sul tessuto fibrotico di muscoli EDMD. Un effetto intrinseco alla mutazione della lamina A è stato rilevato sul espressione di caveolina 3 in mioblasti differenziati EDMD. I risultati si aggiungono a dati forniti sulla patogenesi dell' EDMD confermando che fattori intrinseci ed estrinseci contribuiscono alla malattia. Utilizzo di anticorpi neutralizzanti specifici contro fattori estrinseci potrebbe rappresentare un approccio terapeutico come mostrato in questo studio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zyxin is a phosphoprotein localized at the focal adhesions and on the actin stress fibres, where it regulates the cytoskeleton organization. In addition, zyxin can shift into the nucleus and modulates the gene expression, affecting key cellular processes. Consequently, zyxin is as a crucial factor in the malignancy of several cancers, like Ewing sarcoma (EWS). EWS is a rare tumour of the bones, affecting children and adolescents. The main features of EWS are the presence of a chimeric transcriptional factor, EWS-FLI1 and the high expression of CD99, a glycoprotein necessary for the maintenance of the malignant phenotype. Triggering of CD99 with specific antibodies causes massive cell death, an effect that requires zyxin presence. In EWS zyxin is repressed by EWS-FLI1 and its forced re-expression counteracts the malignant phenotype. In this work we decided to deepen our knowledge on how zyxin affects EWS malignancy. We proved that zyxin is a negative regulator of cell migration, survival and growth in anchorage-independent conditions, confirming the tumour suppressor role of zyxin. Then we focused on the relation between CD99 and zyxin. Loss of function of CD99, by engagement with specific antibodies or use of shRNA, increases zyxin levels and promotes its nuclear translocation. Here, we observed that zyxin impairs the transcriptional activity of the Glioma associated oncogene 1 (Gli1), a member of the Hedgehog signalling pathway, which has a relevant oncogenic function in EWS. To support these evidences, we also reported that the loss of function of CD99 inhibits, trough zyxin mediation, the expression of Gli1 up-regulated target genes, such as NKX2-2, PTCH1 and cyclins, whilst enhances the expression of its down-regulated target GAS1. In conclusion, we presented a more accurate depiction of zyxin role in EWS, which in the future could be further developed in hope to offer new therapeutic approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large fraction of organ transplant recipients develop anti-donor antibodies (DSA), with accelerated graft loss and increased mortality. We tested the hypothesis that erythropoietin (EPO) reduces DSA formation by inhibiting T follicular helper (TFH) cells. We measured DSA levels, splenic TFH, TFR cells, germinal center (GC), and class switched B cells, in murine models of allogeneic sensitization, allogeneic transplantation and in parent-to-F1 models of graft versus host disease (GVHD). We quantified the same cell subsets and specific antibodies, upon EPO or vehicle treatment, in wild type mice and animals lacking EPO receptor selectively on T or B cells, immunized with T-independent or T-dependent stimuli. In vitro, we tested the EPO effect on TFH induction. We isolated TFH and TFR cells to perform in vitro assay and clarify their role. EPO reduced DSA levels, GC, class switched B cells, and increased the TFR/TFH ratio in the heart transplanted mice and in two GVHD models. EPO did also reduce TFH and GC B cells in SRBC-immunized mice, while had no effect in TNP-AECM-FICOLL-immunized animals, indicating that EPO inhibits GC B cells by targeting TFH cells. EPO effects were absent in T cells EPOR conditional KO mice, confirming that EPO affects TFH in vivo through EPOR. In vitro, EPO affected TFH induction through an EPO-EPOR-STAT5-dependent pathway. Suppression assay demonstrated that the reduction of IgG antibodies was dependent on TFH cells, sustaining the central role of the subset in this EPO-mediated mechanism. In conclusion, EPO prevents DSA formation in mice through a direct suppression of TFH. Development of DSA is associated with high risk of graft rejection, giving our data a strong rationale for studies testing the hypothesis that EPO administration prevents their formation in organ transplant recipients. Our findings provide a foundation for testing EPO as a treatment of antibody mediated disease processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the present Ph.D. thesis was to investigate with a One Health approach the epidemiological patterns of T. gondii infection in Italy, to better understand the transmission dynamics of the parasite, following different research lines. The results of a retrospective analysis in animals and human showed the widespread distribution of T. gondii in the study area, with specific antibodies found in various animal species and human populations, indicating its constant presence across diverse environments. The environment plays a significant role in T. gondii's epidemiology. Migratory aquatic birds, rodents, wolves, and wild boars were investigated as sentinels of their spread, highlighting the potential transmission across geographic areas and infection risks for wildlife in natural settings. The study also provided insights into seroprevalence in wolves. Dogs, subjected to serological investigations exhibited risk factors for T. gondii infection, such as cohabitation with cats, coprophagy behaviours, and continuous outdoor. Correlation between serological evidence of exposure to T. gondii and pathological anxiety in large-size dogs was observed, and the consumption of raw meat was associated with a higher risk of infection in these animals. Results of the investigations conducted in this thesis, demonstrate the dynamic nature of T. gondii infection in cattle, characterized by new infections and declining antibody levels over the production cycle. The study also describes a co-infection between T. gondii and Sarcocystis hominis in bovine eosinophilic myositis. In the final part of the Thesis, a comprehensive genotyping of T. gondii in Italy reveals the predominance of Type II strains, particularly in cases of ovine abortion and fatal toxoplasmosis among captive Lemur catta. This approach enhances our understanding of the parasite's genetic diversity and transmission patterns, vital for effective management of its impact on human and animal health in Italy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neisseria meningitidis is a gram negative human obligated pathogen, mostly found as a commensal in the oropharyngeal mucosa of healthy individuals. It can invade this epithelium determining rare but devastating and fast progressing outcomes, such as meningococcal meningitidis and septicemia, leading to death (about 135000 per year worldwide). Conjugated vaccines for serogroups A, C, W135, X and Y were developed, while for N. meningitidis serogroup B (MenB) the vaccines were based on Outern Membrane Vesicles (OMV). One of them is the 4C-MenB (Bexsero). The antigens included in this vaccine’s formulation are, in addition to the OMV from New Zeland epidemic strain 98/254, three recombinant proteins: NadA, NHBA and fHbp. While the role of these recombinant components was deeply characterized, the vesicular contribution in 4C-MenB elicited protection is mediated mainly by porin A and other unidentified antigens. To unravel the relative contribution of these different antigens in eliciting protective antibody responses, we isolated human monoclonal antibodies (mAbs) from single-cell sorted plasmablasts of 3 adult vaccinees peripheral blood. mAbs have been screened for binding to 4C-MenB components by Luminex bead-based assay. OMV-specific mAbs were purified and tested for functionality by serum bactericidal assay (SBA) on 18 different MenB strains and characterized in a protein microarray containing a panel of prioritized meningococcal proteins. The bactericidal mAbs identified to recognize the outer membrane proteins PorA and PorB, stating the importance of PorB in cross-strain protection. In addition, RmpM, BamE, Hyp1065 and ComL were found as immunogenic components of the 4C-MenB vaccine.