6 resultados para PHENOTYPIC CORRELATIONS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Asthma and chronic obstructive pulmonary disease (COPD) are two distinct lung diseases with distinctive clinical and inflammatory features. A proportion of asthmatic patients experience a fixed airflow obstruction that persists despite optimal pharmacologic treatment for reasons that are still largely unknown. We found that patients with asthma and COPD sharing a similar fixed airflow obstruction have an increased lung function decline and frequency of exacerbations. Nevertheless, the decline in lung function is associated with specific features of the underlying inflammation. Airway inflammation increases during asthma exacerbation and disease severity. Less is known about the correlations between symptoms and airway inflammation in COPD patients. We found that there is no correlation between symptoms and lung function in COPD patients. Nevertheless symptoms changes are associated with specific inflammatory changes: cough is associated with an increase of sputum neutrophils in COPD, dyspnoea is associated with an increase of eosinophils. The mechanisms of this correlation remain unknown. Neutrophils inflammation is associated with bacterial colonization in stable COPD. Is not known whether inhaled corticosteroids might facilitate bacterial colonization in COPD patients. We found that the use of inhaled corticosteroids in COPD patients is associated with an increase of airway bacterial load and with an increase of airway pathogen detection. Bacterial and viral infections are the main causes of COPD and asthma exacerbations. Impaired innate immune responses to rhinovirus infections have been described in adult patients with atopic asthma. Whether this impaired immune condition is present early in life and whether is modulated by a concomitant atopic condition is currently unknown. We found that deficient innate immune responses to rhinovirus infection are already present early in life in atopic patients without asthma and in asthmatic subjects. These findings generalize the scenario of increased susceptibility to viral infections to other Th2 oriented conditions.
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
Ethylene plays an important role in apple fruit development. Its biosynthesis is catalyzed by two enzymes ACS and ACO. The first is considered to catalyzes the rate-limiting step of ethylene production and in apple two different alleles (MdACS1-1 and MdACS1-2) of this gene have been identified. The presence in the promoter region of MdACS1-2 allele of a SINE insertion is considered to be responsible for a low transcription level and a pronounced reduction in ethylene production in apple cultivar homozygous for this allele. However, the specific expression of each MdACS1 allele has never been reported as well as any in vivo analysis of its 5’-flanking region. With the present study we addressed these issues by developing a set of qPCR allele specific primers for MdACS1 and by a functional characterization of the MdACS1 promoters by transient expression analysis. qPCR analysis on different apple tissues and stages of development demonstrated that MdACS1-2 allele is never express and that MdACS1-1 allele is ripening-related and expresses predominantly but not exclusively in apple fruit. To test MdACS1 promoter in fruit the only protocol available in literature for transient transformation of apple fruit was evaluated and optimized. Twenty chimeric promoter::reporter constructs were generated and analyzed by Agrobacterium-transient transformation. The in vivo analysis allowed to identify an enhancer-like region of 261 bp in MdACS1 promoter and a region of 57 bp in MdACS1-2 responsible, also if not alone, in the inactivation of the MdACS1-2 allele. Through the assessment of ethylene production in a segregating progeny derived from the cross between Fuji and Mondial Gala (homozygous for MdACS1-2 allele) we demonstrated that at least two other genes may be involved in apple ethylene production. An hypothesis that could explain the difference between Fuji and Mondial Gala have been proposed.
Resumo:
In veterinary medicine, the ability to classify mammary tumours based on the molecular profile and also determine whether the immunophenotype of the regional lymph node and/or systemic metastases is equal to that of the primary tumor may be predictive on the estimation of the effectiveness of various cancer treatments that can be scheduled. Therefore, aims, developed as projects, of the past three years have been (1) to define the molecular phenotype of feline mammary carcinomas and their lymph node metastases according to a previous modified algorithm and to demonstrate the concordance or discordance of the molecular profile between the primary tumour and lymph node metastasis, (2) to analyze, in female dogs, the relationship between the primary mammary tumor and its lymph node metastasis based on immunohistochemical molecular characterization in order to develop the most specific prognostic-predictive models and targeted therapeutic options, and (3) to evaluate the molecular trend of cancer from its primary location to systemic metastases in three cats and two dogs with mammary tumors. The studies on mammary tumours, particularly in dogs, have drawn gradually increasing attention not exclusively to the epithelial component, but also to the myoepithelial cells. The lack of complete information on a valid panel of markers for the identification of these cells in the normal and neoplastic mammary gland and lack of investigation of immunohistochemical changes from an epithelial to a mesenchymal phenotype, was the aim of a parallel research. While investigating mammary tumours, it was noticed that only few studies had focused on the expression of CD117. Therefore, it was decided to further deepen the knowledge in order to characterize the immunohistochemical staining of CD117 in normal and neoplastic mammary tissue of the dog, and to correlate CD117 immunohistochemical results with mammary histotype, histological stage (invasiveness), Ki67 index and patient survival time.
Resumo:
In the first part of the thesis, we propose an exactly-solvable one-dimensional model for fermions with long-range p-wave pairing decaying with distance as a power law. We studied the phase diagram by analyzing the critical lines, the decay of correlation functions and the scaling of the von Neumann entropy with the system size. We found two gapped regimes, where correlation functions decay (i) exponentially at short range and algebraically at long range, (ii) purely algebraically. In the latter the entanglement entropy is found to diverge logarithmically. Most interestingly, along the critical lines, long-range pairing breaks also the conformal symmetry. This can be detected via the dynamics of entanglement following a quench. In the second part of the thesis we studied the evolution in time of the entanglement entropy for the Ising model in a transverse field varying linearly in time with different velocities. We found different regimes: an adiabatic one (small velocities) when the system evolves according the instantaneous ground state; a sudden quench (large velocities) when the system is essentially frozen to its initial state; and an intermediate one, where the entropy starts growing linearly but then displays oscillations (also as a function of the velocity). Finally, we discussed the Kibble-Zurek mechanism for the transition between the paramagnetic and the ordered phase.