4 resultados para PCM wall

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arterial wall contains MSCs with mesengenic and angiogenic abilities. These multipotent precursors have been isolated from variously-sized human adult segments, belying the notion that vessel wall is a relatively quiescent tissue. Recently, our group identified in normal human arteries a vasculogenic niche and subsequently isolated and characterized resident MSCs (VW-MSCs) with angiogenic ability and multilineage potential. To prove that VW-MSCs are involved in normal and pathological vascular remodeling, we used a long-term organ culture system; this method was of critical importance to follow spontaneous 3-D vascular remodeling without any influence of blood cells. Next we tried to identify and localize in situ the VW-MSCs and to understand their role in the vascular remodeling in failed arterial homografts. Subsequently, we isolated this cell population and tested in vitro their multilineage differentiation potential through immunohistochemical, immunofluorescence, RT-PCR and ultrastructural analysis. From 25-30cm2 of each vascular wall homograft sample, we isolated a cell population with MSCs properties; these cells expressed MSC lineage molecules (CD90, CD44, CD105, CD29, CD73), stemness (Notch-1, Oct-4, Sca-1, Stro-1) and pericyte markers (NG2) whilst were negative for hematopoietic and endothelial markers (CD34, CD133, CD45, KDR, CD146, CD31 and vWF). MSCs derived from failed homografts (H-MSCs) exhibited adipogenic, osteogenic and chondrogenic potential but scarce propensity to angiogenic and leiomyogenic differentiation. The present study demonstrates that failed homografts contain MSCs with morphological, phenotypic and functional MSCs properties; H-MSCs are long-lived in culture, highly proliferating and endowed with prompt ability to differentiate into adipocytes, osteocytes and chondrocytes; compared with VW-MSCs from normal arteries, H-MSCs show a failure in angiogenic and leiomyogenic differentiation. A switch in MSCs plasticity could be the basis of pathological remodeling and contribute to aneurysmal failure of arterial homografts. The study of VW-MSCs in a pathological setting indicate that additional mechanisms are involved in vascular diseases; their knowledge will be useful for opening new therapeutic options in cardiovascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background-Amyloidotic cardiomyopathy (AC) can mimic true left ventricular hypertrophy (LVH), including hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD). We assessed the diagnostic value of combined electrocardiographic/echocardiographic indexes to identify AC among patients with increased echocardiographic LV wall thickness due to either different etiologies of amyloidosis or HCM or HHD. Method-First, we studied 469 consecutive patients: 262 with biopsy/genetically proven AC (with either AL or transthyretin (TTR)-related amyloidosis); 106 with HCM; 101 with HHD. We compared the diagnostic performance of: low QRS voltage, symmetric LVH, low QRS voltage plus interventricular septal thickness >1.98 cm, Sokolow index divided by the cross-sectional area of LV wall, Sokolow index divided by body surface area indexed LV mass (LVMI), Sokolow index divided by LV wall thickness, Sokolow index divided by (LV wall/height^2.7); peripheral QRS score divided by LVMI, Peripheral QRS score divided by LV wall thickness, Peripheral QRS score divided by LV wall thickness indexed to height^2.7, total QRS score divided by LVMI, total QRS score divided by LV wall thickness; total QRS score divided by (LV wall/height^2.7). We tested each criterion, separately in males and females, in the following settings: AC vs. HCM+HHD; AC vs. HCM; AL vs. HCM+HHD; AL vs. HCM; TTR vs. HCM+HHD; TTR vs. HCM. Results-Low QRS voltage showed high specificity but low sensitivity for the identification of AC. All the combined indexes had a higher diagnostic accuracy, being total QRS score divided by LV wall thickness or by LVMI associated with the best performances and the largest areas under the ROC curve. These results were validated in 298 consecutive patients with AC, HCM or HHD. Conclusions-In patients with increased LV wall thickness, a combined ECG/ echocardiogram analysis provides accurate indexes to non-invasively identify AC. Total QRS score divided by LVMI or LV wall thickness offers the best diagnostic performance.