4 resultados para Overtone Transitions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis individuates and characterizes irreversible transformations occurring in specific organic and oligomeric/polymeric thin films. These transformations are dewetting in discotic liquid crystals thin films and dewetting and smoothing in oligomeric and polyemeric films. Irreversible transformations are extensively characterized by means of optical and atomic force microscopy. In the case of discotic liquid crystals films the morphological characterization is performed sinchronically with electrical measurements of current during dewetting.
Resumo:
Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.
Resumo:
III-nitride materials are very promising for high speed electronics/optical applications but still suffer in performance due to problems during high quality epitaxial growth, evolution of dislocation and defects, less understanding of fundamental physics of materials/processing of devices etc. This thesis mainly focus on GaN based heterostructures to understand the metal-semiconductor interface properties, 2DE(H)G influence on electrical and optical properties, and deep level states in GaN and InAlN, InGaN materials. The detailed electrical characterizations have been employed on Schottky diodes at GaN and InAl(Ga)N/GaN heterostructures in order to understand the metal-semiconductor interface related properties in these materials. I have observed the occurrence of Schottky barrier inhomogenity, role of dislocations in terms of leakage and creating electrically active defect states within energy gap of materials. Deep level transient spectroscopy method is employed on GaN, InAlN and InGaN materials and several defect levels have been observed related to majority and minority carriers. In fact, some defects have been found common in characteristics in ternary layers and GaN layer which indicates that those defect levels are from similar origin, most probably due to Ga/N vacancy in GaN/heterostructures. The role of structural defects, roughness has been extensively understood in terms of enhancing the reverse leakage current, suppressing the mobility in InAlN/AlN/GaN based high electron mobility transistor (HEMT) structures which are identified as key issues for GaN technology. Optical spectroscopy methods have been employed to understand materials quality, sub band and defect related transitions and compared with electrical characterizations. The observation of 2DEG sub band related absorption/emission in optical spectra have been identified and proposed for first time in nitride based polar heterostructures, which is well supported with simulation results. In addition, metal-semiconductor-metal (MSM)-InAl(Ga)N/GaN based photodetector structures have been fabricated and proposed for achieving high efficient optoelectronics devices in future.
Resumo:
The spectroscopic investigation of the gas-phase molecules relevant for the chemistry of the atmosphere and of the interstellar medium has been performed. Two types of molecules have been studied, linear and symmetric top. Several experimental high-resolution techniques have been adopted, exploiting the spectrometers available in Bologna, Venezia, Brussels and Wuppertal: Fourier-Transform-Infrared Spectroscopy, Cavity-Ring-Down Spectroscopy, Cavity-Enhanced-Absorption Spectroscopy, Tunable-Diode-Laser Spectroscopy. Concerning linear molecules, the spectra of a number of isotopologues of acetylene, 12C2D2, H12C13CD, H13C12CD, 13C12CD2, of DCCF and monodeuterodiacetylene DC4H, have been studied, from 320 to 6800 cm-1. This interval covers bending, stretching, overtone and combination bands, the focus on specific ranges depending on the molecule. In particular, the analysis of the bending modes has been performed for 12C2D2 (450-2200 cm-1), 13C12CD2 (450-1700 cm-1), DCCF (320-850cm-1) and DC4H (450-1100 cm-1), of the stretching-bending system for 12C2D2 (450-5500 cm-1) and of the 2nu1 and combination bands up to four quanta of excitation for H12C13CD, H13C12CD and 13C12CD2 (6130-6800 cm-1). In case of symmetric top molecules, CH3CCH has been investigated in the 2nu1 region (6200-6700 cm-1), which is particularly congested due to the huge network of states affected by Coriolis and anharmonic interactions. The bending fundamentals of 15ND3 (450-2700 cm-1) have been studied for the first time, characterizing completely the bending states, v2 = 1 and v4 = 1, whereas the analysis of the stretching modes, which evidenced the presence of several perturbations, has been started. Finally, the fundamental band nu4 of CF3Br in the 1190-1220 cm-1 region has been investigated. Transitions belonging to the CF379Br and CF381Br molecules have been identified since the spectra were recorded using a sample containing the two isotopologues in natural abundance. This allowed the characterization of the v4 = 1 state for both isotopologues and the evaluation of the bromine isotopic splitting.